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INTRODUCTION

The Structural Assembly Demonstration Experiment (SADE) Program was conceived at

the NASA Marshall Space Flight Center in 1980-81. The underlying concept of this

experiment was to create a near-term Shuttle flight experiment focusing on the deployment

and erection of structural truss elements. Although the exact configuration of the truss

changed repeatedly over the life of the project, an attempt was always made to maintain a

structural configuration relevant to some planned future space program. Thus, the structural

configuration evolved throughout the project from the 10ft cubic truss of the Vought

Corporation to a 5ft truss planned for use in the Science and Applications Space Platform

(SASP) program. Various other augmentations were considered for incorporation, but

always the core of the experiment consisted of a linear trusswork structure, with some cells

deployed by the shuttle Remote Manipulator System (RMS) and some cells built up from

individual struts by shuttle crew in extravehicular activity (EVA). An artist's concept of the

"baseline" SADE structure is shown in Figure 1.

One of the unusual features of this program is that, thoughout its life, the SADE experiment

was a program in search of a constituency. Thus, at various times the structure did and did

not include automatically deployable ceils, heat pipes, tip masses, reflective coatings, and

mechanical and impulsive actuators. It is therefore somewhat ambiguous to speak of the

"baseline" SADE structure, as this was subject to almost monthly revision. However, the

involvement of the MIT Space Systems Laboratory in this experiment centered on two

aspects. The initial (and primary) involvement of the SSL concerned the operational aspects

of structural erection, especially including EVA assembly and RMS deployment. This

interest grew from an accumulated data base of EVA manual assembly tests performed by

M1T in the Marshall Neutral Buoyancy Simulator since January, 1980. A second interest

area concerned the structural dynamics of the assembled truss, along with measurement of

the applied loads during the assembly procedure. Thus, one of the important tasks of the

MIT study team was to analyze the expected dynamic behavior of the SADE truss, and plan

for the incorporation of a limited instrumentation system to obtain data on these structural

issues.

This publication is the final report of the MIT work on the SADE experiment, performed

under contract number NAS8-34959 for the NASA Marshall Space Flight Center (James

Harrison, contract monitor). The activities of the MIT Space Systems Laboratory can be

summarized in three major areas: preparing and conducting neutral buoyancy simulation
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Figure 1

Artist's Concept of Complete SADE Structure
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test series; producing a formal SADE Experiment Plan; and studying the structural

dynamics issues of the truss structure. Each of these will be summarized in the following

sections of the main body of this report, and covered in depth in individual appendices

NEUTRAL BUOYANCY TESTING

The SADE Program included four series of neutral buoyancy tests, over the two-year active

period of the program. These neutral buoyancy tests were planned and carried out by MIT

at the NASA Marshall Neutral Buoyancy Simulator, and resulted in substantial refinement

of the SADE experimental objectives and methodology.

The f'ast test series (NB-50A) was performed during the month of March, 1983, and

focused on the design of the erectable module. During this test, a single cell was repeatedly

assembled and disassembled by neutral buoyancy test subjects. This series incorporated the

fast test of the Launch Assembly Platform (LAP) design, and evaluation of the operational

implications of the tip mass planned for incorporation into the final st_'ucture. Two tip

masses were used during this test series: the fast, constructed by NASA MSFC, was built

to the envelope of the planned flight tip mass, to be used for investigating crew interfaces,

launch restraints, etc. The second, designed and constructed by MIT, had in neutral

buoyancy the full 50001b mass of the flight tip mass, and was used to study the ability of

the test subjects to manipulate such a large mass. Both tip masses proved to be easy to

maneuver, and further use of the full-mass unit was discontinued for later test series. A

typical assembly from this test series is shown in Figure 2.

The second test series (NB-50B) was held in August, 1983. The intent of this test was to

go beyond the single-cell erection, and look at tasks more representative of the end-to-end

SADE activities under consideration. Since the neutral buoyancy versions of the SADE

deployable truss had not been completed, the MIT Space Systems Laboratory designed and

fabricated a mockup of the two-cell deployable section. This mockup was a rigid truss,

which could be slid down through the LAP on a sliding track arrangement. Thus, the EVA

test subjects built the first cell on top of the deployable mockup, which was then slid

upwards out of the LAP by a combination of manual force and RMS motion. A lower

assembly fixture (the "mousetrap") was then swung across the top of the LAP, providing

the location for completion of the lower assembled cell, to which the mockup of the

deployable structure was mated. A four-cell SADE structure was the end result of this

assembly procedure, as shown in Figure 3. This test series started to identify limitations in

applied force levels obtainable from the RMS, as well as positioning accuracy limitations
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that were dealt with by final manual manipulation of the sections as they were joined.

Modifications were also made to the type and number of structural connectors used, based

on problems encountered with individual connector designs during the previous neutral

buoyancy test series.

With the NB-50C testsin June, 1984, a functionaldeployable cellwas incorporatedforthe

firsttime intothe assembly procedure.No launch support structurewas availablefor the

deployed cells,so the deployable module merely restedinthe top of the LAP during the

assembly of thetop cell,and was then unfolded by theRMS and/orthe EVA subjects.The

structuralconfigurationused during thistestisshown inFigure 4.This testshowed some

difficultiesin pure RMS deployment, as the latching mechanisms on the telescoping

diagonal strutsdid not reliablyengage under RMS actuationforces.As in theNB-50B tests

with a mockup of the two-celldeployable section,thistestwas limitedin water depth to

four total cellsof the structure.

Much effortwas exertedtodiscovertechniquesby which thefullseven-cellstructuremight

be assembled in the neutral buoyancy tank. Since the seven cellsformed a 35ft truss

structure,therewas not enough room toconstructitverticallyupwards, due tothe heightof

the LAP and itsmounting positionin the payload bay mockup. Itwas suggested thattwo

sectionsof theMSFC NBS shuttlebay mockup might be placed verticallyon thetank wall,

to allow the structureto be butt horizontallyacrossthe diameter of the tank.This would

allow the fullconstructionof the truss,even with the heightof the LAP mounted in the

shuttlebay mockup. Although the preliminary hardware to perform thisaction was

fabricatedand tested,itwas feltthatthiswould requiretoo much time from a busy NBS

schedule to allow the rotationof the shuttlebay sectionsintothe verticalarrangement.

There were alsoproblems with realisticmounting arrangements for the forward payload

bay video cameras and remote manipulator system, which were needed for thc test

operations.

Due to the difficultiesassociatedwith the verticaltestorientationof the payload bay, the

decision was made for NB-50D (August, 1984) to accept the limitationsof the vertical

assembly procedure. In order to maximize the assembled hardware, one sectionof the

shuttlepayload bay mockup was removed, and the LAP placed directlyon thefloorof the

neutralbuoyancy tank.This allowed the constructionof two assembled and two double-ccU

deployed modules, fora totalsix-ceUstructure(Figure5).Some problems were associated

with thisoperation,however: of particularnuisance was theproximityof thetestsubjects
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Figure 4

Four-Cell SADE Structure from NB-50C
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Figure 5

Six.Cell SADE Structure from NB-50D
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SADE Final Report Page 8



to the bottom of the tank. It turned out that even leaning back could drop the pressure suit's

regulator to an equivalent depth (including suit internal pressure) greater than 40 ft. This

would necessitate the use of the 50ft dive tables for the test subject, which in several

instances aborted active test runs for the much shorter bottom times available under this

diving protocol.

NB-50D activities also included the use of a launch restraint fixture for the deployable cells,

which proved to be less than a total success. In addition, changes were indicated in the

choice of connectors for the assembled ceils, and in the mockups to incorporate EVA

overhead associated with the instrumentation system. For this reason, two further series of

SADE tests were planned. A test in January, 1985 was to have verified the final

configuration of the structural hardware, and would have incorporated the instrumentation

system connections into the EVA procedures. A further test series in the summer of 1985

was to have been an all-up end-to-end test of SADE, including vertical orientation of the

payload bay, and the full construction of seven bays with flight-configuration holddowns

and support interfaces. Both of these test series were cancelled with the termination of the

SADE program. As the NB-50D activities represent the most detailed SADE neutral

buoyancy tests completed, the summary report from this test series is included in this final

report as Appendix A.

EXPERIMENT PLANNING SUPPORT

As part of the MIT contract, the SSL participated in the formal development of the SADE

Experiment Plan. This document went through several iterations, as the purposes and

auxiliary experiments of the program changed over time. As mentioned above, the primary

emphasis of the experiment was to correlate neutral buoyancy activities to the same tasks

performed in space, to obtain data on the manual assembly and RMS-aided deployment of

structures in the flight environment, and to obtain any structural data (on both the assembly

process and the completed structure) which might be obtained without large additional

expenditures on instrumentation. The formal SADE Experiment Plan, as produced by M/T,

is included in this report as Appendix B. This plan was undergoing revisions at the

termination of the SADE program. It was planned to incorporate the information from the

later neutral buoyancy simulations (including the planned January 1985 test) into the final

experiment baseline, and to produce the revised experiment plan concurrently with the all-

up SADE neutral buoyancy test in the summer of 1985.
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STRUCTURAL DYNAMICS ANALYSIS

The original impetus for the SADE experiment was the structural assembly aspect.

However, it was felt that it would be unfortunate to construct a structure, without obtaining

some information of the dynamics at the same time. While some members of the structures

community were uninterested in SADE since it was not specifically designed as a structural

dynamics experiment, the MIT experiment team felt strongly that some useful data could be

obtained from SADE, without redefining the entire structure to meet dynamics goals. As

part of this effort, the SSL performed an in-depth analysis on the dynamics of space

structures, focusing on the SADE truss to obtain information necessary to decide upon the

proper number and placement of sensors to maximize data return from limited

instrumentation.This dynamics reportisincludedhereinas Appendix C.

CONCLUSIONS AND RECOMMENDATIONS

The SADE Program was (arguably)the firsttoaddress the issueof a near-term space test

of assembly and deployment activities.Although the programmatic aspectsof the SADE

experiment were not within the scope of the MIT activities, it might be asserted that the

biggest problem of SADE was an implicit assumption that a flight experiment which "only"

did structural assembly was not of sufficient interest to merit the costs required. Thus,

while SADE searched about for alternate investigations and configurations, it was (to some

extent) superceded by the EASE and ACCESS experiments, which were kept tightly

focused on structural assembly objectives.

SADE represented an interesting and ambitious project, which still has several attractive

features even following the successful EASE/ACCESS experiments of STS 61-B. It

addressed the issue of deployable trusses, and included an innovative use of the shuttle

remote manipulator system to provide the actuation force for deployment and retraction. It

addressed the issue of interfaces between manually assembled and automatically deployed

structure, and had the capability to look at manual structural deployment as an alternative to

the automated systems. It included an instrumentation system to measure loads applied

during the assembly process, as well as loads present in the completed structure under

normal "operations". The cubic truss of the SADE structure was much closer in

configuration to the current Space Station truss than either the EASE or ACCESS

configurations, and incorporated a number of connector designs that would have provided

a wealth of data on alternative latching mechanisms and motions for EVA manual
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assembly. Later versions incorporating many automatically deployed cells would have

produced a large truss structure with low natural frequencies, which would have been of

interest in structural dynamics modeling of the Space Station. Alternative experiments such

as heat pipe installation and thermal recoating would have likewise added to the data base of

space spation operations.

Much of the data still needed for the Space Station and subsequent programs could have

been obtained from the SADE flight experiment. Although, with the hiatus in shuttle flights

and restrictions on the manifest for the foreseeable future, it is difficult to imagine a

resurrection of SADE, it is very likely that future programs will require further flight

experiments that, like EASE and ACCESS, will have a substantial legacy from the SADE

program.

\
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APPENDIX A: NB-50D SUMMARY REPORT
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NB-50D SADE TEST OBJECTIVES

O

O

O

O

HARDWARE EVALUATION:

MIT SUPPLIED ASSEMBLY HARDWARE

MSFC SUPPLIED DEPLOYABLE HARDWARE

RESTRAINT AND PERIPHERAL HARDWARE

NOTE:

PROCEDURES EVALUATION:

ASSEMBLY PROCEDURES FOR TWO ERECTABLE CELLS

ASSEMBLY PROCEDURES FOR TWO DEPLOYABLE MODULES

DISASSEMBLY AND STOWAGE PROCEDURES

MANIPULATION OF TIP MASS

ASSESSMENT OF EVA TIMELINES

EVALUATION OF SHUTTLE EMU'S

THE GOAL OF THIS TEST SERIES WAS TO PERFORM AS MUCH HARDWARE

AND PROCEDURES EVALUATION AS POSSIBLE WITHOUT REQUIRING THAT

THE SHUTTLE BAY MOCKUP IN THE NEUTRAL BUOYANCY TANK BE TURNED

VERTICAL.
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0

0

0

NB-50D SADE TEST HARDWARE

MIT SUPPLIED HARDWARE:

24 ASSEMBLED CELL STRUTS

2 RESTRAINT BOXES FOR STRUTS

MODIFICATION HARDWARE FOR TIP MASS

INSTRUMENTED STRUT AND DATA COLLECTION SYSTEM

MSFC SUPPLIED HARDWARE:

2 DEPLOYABLE MODULES

RESTRAINT FIXTURE

LAUNCH/ASSEMBLY PLATFORM (LAP)

TIP MASS AND PORTABLE GRAPPLE FIXTURE

RMS AND OTHER SUPPORT HARDWARE

STRUCTURAL CONNECTORS USED IN EACH ASSEMBLED CELL:

4 MIT SLEEVE-LOCKING JOINTS

4 VOUGHT QUICK CONNECTS (MODULE-TO-MODULE CONNECTORS)

4 LANGLEY CONNECTORS (SIDE-LOCK, THUMB-RELEASE)

4 VOUGHT CLEVIS COUPLERS
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RUN NUMBER

2

4

NB-50D SADE TEST RUNS

(8/15/84-8/23/84)

DISASSEMBLY TIMES NOTES

A - 52:28

D - 32:29

FOOT RESTRAINTS NOT USED

STIFF CLEVIS SPRINGS

A - 39:54

D - 41:20

TIP MASS GRAPPLE FIXTURE BROKEN

STIFF CLEVIS SPRINGS

A - 31:31

D - 36:20

A - 39:10

STIFF CLEVIS SPRINGS

No RMS, ALL MANUAL

A - 25:20

D - 24:18

A - 18:01

o

No RMS, INCOMPLETE ASSEMBLY

A - 35:51

D - 23:45

TIP MASS INSTALLED MANUALLY

A - 39:36

D - 29:24

A - 25:30

D - 19:30

m

I

INSTRUMENTED STRUT INSTALLED

O

O

O

ALL OF THE STRUCTURAL ASSEMBLIES (A) AND DISASSEMBLIES (D) LISTEE

ABOVE CONSISTED OF TWO ASSEMBLED CELLS AND TWO DEPLOYABLE

MODULES, YIELDING A SIX-CELL STRUCTURE.

TEST SUBJECTS FOR ALL SIX RUNS WERE DAVE AKiN AND MARY BOWDEN.

TIMES LISTED ABOVE ARE IN MIN:SEC, AND SHOW LEARNING TRENDS AS

ILLUSTRATED IN THE FOLLOWING GRAPHS.
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SADE TEST RESULTS - HARDWARE EVALUATION

• ASSEMBLED CELL HARDWARE AND RESTRAINT BOXES

O THE MIT JOINTS AND THE VOUGHT QUICK-CONNECTS BOTH WORKED

VERY WELL ON THE LONGITUDINAL STRUTS, THE MIT JOINT COULD

BE IMPROVED BY GUARANTEEING THAT THE PUSH BUTTON - SLIDE

SLEEVE RELEASE MOTION CAN BE RELIABLY PERFORMED WITH ONE

HAND.

O THE VOUGHT CLEVIS COUPLERS ON THE DIAGONAL STRUTS WERE FOUND

TO BE UNACCEPTABLE BECAUSE OF MECHANICAL DIFFICULTIES DURING

BOTH ASSEMBLY AND DISASSEMBLY. THE SUGGESTION WAS MADE TO

REPLACE THIS CONNECTOR WITH ANOTHER ONE, YET TO BE

DETERMINED, PERHAPS THE LANGLEY/ACCESS CONNECTOR. EMIT] THE

LANGLEY CONNECTORS ON THE DIAGONALS WORKED WELL, EXCEPT THAT

IT WAS OCCASIONALLY DIFFICULT TO DETERMINE IF THE CONNECTOR

WAS FULLY LOCKED.

O ONE OF THE FOUR DIAGONALS IN EACH ASSEMBLED CELL IS SHORTER

THAN THE OTHER THREE, BECAUSE OF THE DESIGN OF THE

DEPLOYABLE MODULES. THIS WAS FOUND TO BE A MINOR

INCONVENIENCE DURING ASSEMBLIES,

O THE STRUT RESTRAINT BOXES PERFORMED SATISFACTORILY, BUT IT

WAS NOTED THAT A DOOR THAT FOLDS BACK OUT OF THE WAY IS

PREFERABLE, AND NEW DOOR LATCHES ARE NEEDED. EMIT]
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SADE TEST RESULTS - HARDWARE EVALUATION

II, DEPLOYABLE MODULES

O DEPLOYMENT OF THE DEPLOYABLE MODULES WAS VERY DIFFICULT

BECAUSE ONLY A SMALL COMPONENT OF THE UPWARD LIFTING RMS

FORCE ACTED ALONG THE TELESCOPING DIAGONALS TO LOCK THE

LATCHES, WHILE THE LATCHES BECAME INCREASINGLY TIGHT JUST

BEFORE LOCKING, AN OVER-CENTER LATCHING MECHANISM COULD

PROBABLY SOLVE THIS PROBLEM, [MSFC]

O RETRACTION OF THE DEPLOYABLE MODULES WAS ALSO MADE EXTREMELY

DIFFICULT BECAUSE OF THE LATCHES ON THE DIAGONALS, WHICH

SIMPLY COULD NOT BE OPENED OR HELD OPEN IN A PRESSURE SUIT

GLOVE EVEN WITH THE AID OF THE PLIERS-TYPE TOOL DESIGNED FOR

THIS PURPOSE. A RELEASABLE OVER-CENTER LATCH SHOULD SOLVE

THIS PROBLEM, AND WOULD ALSO ELIMINATE THE NEED FOR A

DISASSEMBLY TOOL. [MSFC]

O ONE OF THE DIAGONALS USED IN EACH ASSEMBLED CELL IS SHORTER

THAN THE OTHER THREE,AS MENTIONED ABOVE, BECAUSE OF

PARTICULARITIES IN TWO OF THE NODES OF THE DEPLOYABLE

MODULE, DATING BACK TO A DESIGN WHICH ALLOWED THE STRUCTURE

TO BE DEPLOYED AND RETRACTED AUTOMATICALLY. MAKING THESE

NODES SIMILAR TO THE OTHERS ON THE DEPLOYABLE MODULE WOULD

ELIMINATE THIS DISTINCTION. [MSFC]

O THE HAT SHAPED STRUTS OF THE DEPLOYABLE MODULES WERE FOUND

TO HAVE TWO PROBLEMS: FIRST, THE FLANGES OVERLAPPED AND GOT

HUNG UP ON THE TRACKS AND SIDES OF THE RESTRAINT FIXTURE;

AND SECOND, THE EDGES WERE TOO SHARP AND THEREFORE HAZARDOUS

TO THE SUIT GLOVES. [MSFC]

SADE Final Report Page 20



SADE TEST RESULTS - HARDWARE EVALUATION

- III. LAUNCH/ASSEMBLY PLATFORM AND RESTRAINT FIXTURE

O THE LAUNCH/ASSEMBLY PLATFORM (LAP) AND ESPECIALLY THE

RESTRAINT FIXTURE BOTH NEED MORE HANDRAILS INSTALLED ALONG

ALL TRANSLATION PATHS. [MSFC/MIT]

O THE STOWAGE LOCATION FOR THE TIP MASS AT THE BOTTOM OF THE

LAP IS NO LONGER COMPATIBLE WITH THE DIMENSIONS OF THE TIP

MASS, BECAUSE THIS WAS MODIFIED TO CONFORM TO THE NEW

CONFIGURATION OF THE ASSEMBLED CELLS, THIS PROBLEM CAN MOST

EASILY BE SOLVED BY BUILDING A NEW TIP MASS WITH COMPATIBLE

DIMENSIONS. [MIT]

O THE GUIDE TRACKS ON THE RESTRAINT FIXTURE ARE COMPLETELY

UNACCEPTABLE IN THEIR PRESENT CONFIGURATION, BECAUSE THEY DO

NOT AQEQUATELY CONTROL THE UPWARDSAND OOWNWARDS SLIDING OF

THE DEPLOYABLE MODULES. TRACKS THAT CLOSE SOMEWHAT AROUND

THE BACK OF THE SLIDER BALLS, AND BALLS THAT ARE OFFSET

FURTHER AWAY FROM THE OEPLOYABLES, SHOULD IMPROVE THE

SITUATION CONSIDERABLY. [MSFC]

O THE T-HANDLE FORKLATCHES iNSTALLED ON THE FORWARD TRACKS OF

THE RESTRAINT FIXTURE NEED A GREATER RANGE OF ADJUSTABILITY

UP AND DOWN, IN ORDER TO PROPERLY LOCK THE DEPLOYABLES IN

PLACE. A MODIFIED VERSION OF THESE LATCHES, WITH SMALLER

ACTUATION HANDLES FOR EXAMPLE, MUST BE INSTALLED ON THE

MIDDLE TRACKS. IN ADDITION, TRACKS AND PERHAPS FORKLATCHES

COULD BE INSTALLED ON THE AFT END OF THE RESTRAINT FIXTURE,

ELIMINATING THE TAILGATE MECHANISM. [MSFC]
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SADE TEST RESULTS - HARDWARE EVALUATION

IV. TIP MASS

O MORE HANDRAILS SHOULD BE INSTALLED ON THE TIP MASS, [MSFC]

O THE JOINT FIXTURES INSTALLED ON THE BOTTOM SIDE OF THE TIP

MASS WERE FOUND TO INTERFERE WITH THE STOWAGE TRACKS IN THE

BOTTOM OF THE LAP, THESE FIXTURES WILL HAVE TO BE MODIFIED

IN ORDER TO USE THIS STOWAGE LOCATION IN THE NEXT TEST

SERIES. [MIT]

O THE PORTABLE GRAPPLE FIXTURE (PGF) USED DURING THE NB-50D

TESTS WAS NOT REMOVABLE FROM THE TiP MASS. THIS DID NOT

ALLOW INSTALLATION PROCEDURES FOR THE PGF TO BE TESTED. THE

PGF SHOULD BE FIXED BY REMOVING A BROKEN PiP PiN, AND

REPLACING IT WITH A NEW ONE. [MSFC]

V. RMS

O

O

USE OF THE RMS WOULD BE GREATLY FACILITATED, AND TIMELINES

IMPROVED, BY THE INTEGRATION OF A FLIGHT-TYPE CONTROL SYSTEM

AT THE RMS WORKSTATION. [MSFC]

THE RMS SNARE GRAPPLING MECHANISM DOES NOT PERFORM AS IT

SHOULD, EVEN IN MANUAL MODE, BECAUSE OF THE LACK OF LATCHING

MECHANISMS ON THE CLOSURE AND RETRACTION LEVERS OF THE END-

EFFECTOR. ULTIMATELY, BOTH OF THESE OPERATIONS (CLOSURE AND

RETRACTION) SHOULD BE CONTROLLED BY THE RMS OPERATOR AT THE

WORK STATION. [MSFC]

Vl. CAMERAS

o AN EVALUATION OF FLIGHT REALISTIC VIDEO COVERAGE COULD NOT

BE PERFORMED DURING THIS TEST SERIES BECAUSE OF THE ABSENCE

OF ALL NECESSARY CAMERAS. AT LEAST BOTH FORWARD BULKHEAD

CAMERAS ARE ESSENTIAL FOR THE NEXT TEST SERIES. IDEALLY, ONE

SHOULD HAVE A WIDE-ANGLE ZOOM LENS INSTALLED, [MSFC]

o THE AFT BULKHEAD CAMERAS, AND BOTH THE RMS ELBOW AND WRIST

CAMERAS WILL ALSO BE USED TO SOME EXTENT IN FLIGHT. [MSFC]
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SADE TEST RESULTS - PROCEDURES

I. ASSEMBLY PROCEDURE

O

O

THE PROCEDURE FOLLOWED FOR ALL OF THE ASSEMBLED CELLS WAS

THAT OUTLINED AT THE END OF THE LAST SERIES OF SADE TESTS:

FIRST, ALL FOUR LONGITUDINALS WERE INSTALLED AT THE LOWER

END; THE UPPER SECTION OF STRUCTURE (EITHER TIP MASS OR

DEPLOYABLE MODULE) WAS THEN BROUGHT INTO POSITION BY THE

RMS AND ATTACHED MANUALLY; THE FOUR DIAGONAL STRUTS WERE

THEN INSTALLED. THIS PROCEDURE WORKED WELL, AND ALLOWED

BOTH TEST SUBJECTS TO WORK ON THEIR SIDE OF THE STRUCTURE

EFFICIENTLY AND INDEPENDENTLY.

IT SHOULD BE NOTED THAT THE ASSEMBLED STRUTS DO NOT GO

TOGETHER EASILY, UNLESS EACH ONE IS EXACTLY THE RIGHT LENGTH

AND THE ASSEMBLED CELL IS NOT BEING STRESSED EXTERNALLY. THE

RMS, FOR EXAMPLE, ALMOST INEVITABLY PUTS SOME LOAD ON THE

ASSEMBLED CELL WHILE IT IS HOLDING THE UPPER PORTION OF THE

STRUCTURE ATTACHED TO IT,

II, DEPLOYMENT PROCEDURE

O THE PROCEDURE OF DEPLOYING THE STRUCTURE WITH THE RMS WHILE

THE TEST SUBJECTS PROVIDE GUIDANCE ON EACH SIDE WORKS WELL.

ALL DEPLOYMENT PROBLEMS ENCOUNTERED WERE A DIRECT RESULT OF

HARDWARE PROBLEMS DESCRIBED ABOVE.

III. STOWAGE PROCEDURE

O STOWAGE OF THE STRUCTURE WAS PERFORMED BY REVERSING THE

PROCEDURES USED DURING THE ASSEMBLY PROCESS. THUS MOST OF

THE PROBLEMS ENCOUNTERED DURING STOWAGE WERE IDENTICAL TO

THO5E LISTED ABOVE, AND RESULTED PRIMARILY FROM INADEQUATE

HARDWARE.

\
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SADE NB-50D TEST SUMMARY

I. ACCOMPLISHMENTS OF THIS TEST

O THE SADE STRUCTURE WAS ASSEMBLED IN ALMOST ITS FULL FLIGHT

CONFIGURATION,

O ALL BASIC HARDWARE WAS EVALUATED, MODIFICATIONS OUTLINED,

AND RESPONSIBILITIES ASSIGNED SO APPROPRIATE CHANGES CAN BE

MADE.

O NEW HARDWARE REQUIREMENTS WERE IDENTIFIED AND PROCUREMENT

INITIATED IN MOST CASES.

O

o

ALL BASELINE ASSEMBLY, DEPLOYMENT, AND STOWAGE PROCEDURES

(EXCEPT THOSE PERTAINING TO THE PORTABLE GRAPPLE FIXTURE)

WERE VERIFIED.

A PRELIMINARY ASSESSMENT OF FLIGHT-REALISTIC TIMELINES WAS

OBTAINED FOR THE BASIC ASSEMBLY AND DISASSEMBLY OPERATIONS,

II. RECOMMENDATIONS FOR FURTHER TESTS

THE FOLLOWING TWO TEST SERIES ARE RECOMMENDED TO BRING SADE CLOSER TO

FLIGHT:

I •

•

A TEST IN JANUARY, 1985, TO EVALUATE NEW SUPPORT HARDWARE,

TO DETERMINE WHICH CONNECTOR SHOULD BE USED TO REPLACE THE

VOUGHT CLEVIS COUPLER, AND TO TEST NEW CAMERA AND

INSTRUMENTATION SYSTEMS.

A TEST DURING THE SUMMER OF 1985 TO ASSEMBLE THE ENTIRE

SEVEN CELL STRUCTURE; THIS WILL REQUIRE THAT THE CARGO BAY

BE TURNED VERTICAL IN THE NEUTRAL BUOYANCY TANK. THIS TEST

WILL ALSO INCLUDE ALL PERIPHERAL HARDWARE AND SYSTEMS AS

CLOSE TO FLIGHT CONFIGURATION AS POSSIBLE.
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SADE - JANUARY 1985 TEST SERIES

APPROACH

FOUR CELLS OF THE SADE STRUCTURE WILL BE BUILT DURING THIS TEST

SERIES: TWO ASSEMBLED CELLS AND ONE DOUBLE-CELL DEPLOYABLE MODULE.

THIS WILL ALLOW ENOUGH ROOM FOR THE LAP TO BE PLACED ON A PALLET IN THE

PAYLOAD BAY, SO THAT ALL OF THE LOWER INTERFACES OF THE STRUCTURE WITH

THE SHUTTLE CAN BE CHECKED. THUS, FOR EXAMPLE, SLIDEWIRE TETHERS CAN BE

USED, RECORDER BOX MOCKUPS WlL BE INSTALLED, AND MORE REALISTIC WORK

ENVELOPES WILL BE SIMULATED.

NEW HARDWARE

O THREE NEW CONFIGURATIONS OF THE ASSEMBLED CELL, EACH ONE

DIFFERING ONLY BY THE JOINTS USED TO REPLACE THE VOUGHT

CLEVIS COUPLERS, WHICH WERE FOUND TO BE UNACCEPTABLE:

- TWO INCH DIAMETER LANGLEY CONNECTORS

- "NEW" LANGLEY CONNECTORS WITH THE LOCKING SLEEVE

- MIT JOINTS.

O MODIFICATIONS OF TIP MASS:

- NEW CONNECTOR FIXTURES TO ACCOMODATE THE NEW

CONNECTORS LISTED ABOVE, AND TO ALLOW STOWAGE OF TIP

MASS IN TRACKS ON LAP

- MORE HANDRAILS INSTALLED

- REPAIRED PORTABLE GRAPPLE FIXTURE

O MOCKUPS OF RECORDER 8OXES
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SADE - JANUARY 1985 TEST SERIES

NEW HARDWARE (CONTINUED)

O NEW INSTRUMENTATION SYSTEM:

- MOCKUPS OF ELECTRICAL CONNECTORS INSTALLED ON A

REPRESENTATIVE NUMBER OF STRUTS, AND MOCKUPS OF A

DATA COLLECTION BOXES

- AN ACTIVE SET OF STRAIN GAGES INSTALLED ON ONE

STRUT FOR COLLECTION OF LOADS DATA.

O NEW VIDEO SYSTEM:

- FORWARD BULKHEAD CAMERAS, ONE OF WHICH SHOULD HAVE

A WIDE-ANGLE ZOOM LENS

- RMS CAMERAS

- A DATA COLLECTION PROCEDURE USING TRACKING TARGETS

INSTALLED ON THE EMU's AND BACKPACKS, AND SOFTWARE

AVAILABLE FOR ANALYSIS OF BODY DYNAMICS DATA.
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SADE SUMMER 1985 TEST SERIES

APPROACH

THE SADE TEST SERIES TO BE CONDUCTED DURING THE SUMMER OF 1985

SHOULD BE A TEST OF THE FULL ALL-UP SADE FLIGHT EXPERIMENT. THIS WILL

INCLUDE AT LEAST THE FOLLOWING OBJECTIVES:

0

0

0

0

0

0

0

0

VERTICALLY ORIENTED SHUTTLE BAY MOCKUP

THE FULL SEVEN CELL SADE STRUCTURE

THREE FINAL CONFIGURATION ASSEMBLED CELLS

FLIGHT DESIGN LATCH FIXTURES ON THE DEPLOYABLE MODULES

FLIGHT DESIGN RESTRAINT FIXTURE AND LAP

FLIGHT TYPE CONTROL SYSTEM FOR RMS

COMPLETE VIDEO COVERAGE SYSTEM (BULKHEAD AND RMS CAMERAS)

INSTRUMENTATION SYSTEM FOR LOADS DATA
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APPENDIX B: SADE EXPERIMENT PLAN
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1.0 INTRODUCTION

Many large scale space systems envisioned for the next two decades of the

US space program rely on the availability of structural platforms as a

strongback for mounting scientific experiments, communication antennae,

materials processing and fabrication modules, or living quarters. Because

of the size requirements for these platforms, they clearly cannot be

launched in finished form in the cargo bay of the shuttle orbiter. For

this reason, it will be necessary to either deploy or assemble the struc-

ture while on orbit. A near term flight experiment to demonstrate these

capabilities and to identify potential problems is presented here.

1.1 Purpose

A structural assembly demonstration experiment (SADE) is a critical first

step in the development of large space structures. It will help to deter-

mine how best to go about assembling structures, and what role crewmen

can play in the construction procedure.

The fundamental purposes of SADE are as follows:
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1. To establish a quantitative correlation between earth-based assembly

simulations and on orbit operations

2. To obtain assembly data relating to orbital assembly with the Manned

Maneuvering Unit (MMU) and the Remote Manipulator System (RMS)

3. To study the structural dynamics and thermal characteristics of an

intermediate-scale space structure in a realistic environment

1.2 Scope

The purpose of the SADE Experiment Plan is to outline and guide the

development of the scientific objectives of this flight experiment. This

document details the following tasks:

Identification of experiment objectives

Planning of experimental approach

Data acquisition methods

Data analysis techniques
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1.3 Experiment Rationale

Neutral buoyancy is currently the most effective medium for ground-based

simulation and testing of assembly operations. However, in order to have

confidence in the validity of the simulation results, it is necessary to have

a full understanding of the relationship between neutral buoyancy and

on-orbit timelines. Clearly, a near-term flight experiment using hardware

previously tested in neutral buoyancy, will yield quantitative correlation

factors for a wide variety of assembly-related tasks. In addition, more

general insight into the strengths and limitations of neutral buoyancy as a

simulation medium can be obtained. It is imperative to have this know-

ledge if neutral buoyancy is to be used in the future to successfully

predict the number of flights, days, and EVA sorties necessary to com-

plete the construction of a larger scale space platform.

The second fundamental purpose of this experiment is to obtain manual

assembly data, both quantitative data on such things as productivity, and

qualitative data relating to procedures and hardware evaluation. For this

reason, the flight structure should be designed from the beginning as an

apparatus to be assembled by pressure suited subjects. Once complete,

however, it should yield significant scientific and engineering structural

data while on-orbit. In addition, this structure should have validity as a

space platform in its own right, incorporating hardware which may be a

development model for future space systems.
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2.0 EXPERIMENT OBJECTIVES

The prime objectives of the Structural Assembly Demonstration Experiment

can be subdivided into the following three categories:

1. Simulation Correlation

2. Assembly Factors

3. Structural Study

The objectives of each category are described briefly in this section.

2.1 Simulation Correlation

To correlate neutral buoyancy simulations with on-orbit operations, the

first objective is to establish a timeline data base for assembly tasks, then

to calculate the correlation factors for each task, and finally to extrapo-

late these correlation factors to other assembly tasks and structures. In

addition to this quantitative analysis, a better understanding of the neu-

tral buoyancy environment will be obtained from this analysis so that the

simulation can be improved for future projects.
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2.2 Assembly Factors

One objective under this section is to quantify extra-vehicular (EV)

kinematics. By studying the motions of both the astronaut and the compo-

nents manipulated, it is possible to gain a fundamental insight into the

physics of extravehicular activity (EVA). By using the on-orbit experi-

ence to validate sophisticated computer models, an EVA procedures

designer will be able in the future to perform initial neutral buoyancy

tests on the computer, saving hardware and test costs, and reducing the

load on the highly limited number of neutral buoyancy facilities. A fur-

ther assembly objective is to evaluate, from the point of view of the user,

the structural hardware and peripheral equipment used in this flight

experiment, and to identify possible improvements for future use. The

k'ey parameters characterizing ease of assembly or deployment will also be

identified. (For example, is length or moment of inertia the Significant

variable for beam alignment?)

2.3 Structural Study

Instrumentation will be installed on the structure to meet the following

objectives: the lowest natural frequencies and modes of the structure will

be quantified; the loads imposed on the structure by deployment, by EVA
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assembly, by MMU-augmented assembly, by RMS operations, and by shut-

tle vernier thrusters will be measured; and dampin9 for the structure as

a whole will be analyzed.
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3.0 EXPERIMENTAL APPROACH

This section describes the experimental hardware, the preparatory tests

prior to the flight, the procedures to be used on orbit, and the post

flight data analysis and testing.

3.1 Experimental Hardware

The central part of this flight experiment is to construct and subsequent-

ly disassemble a hybrid deployable-erectable structure in the space shut-

tle cargo bay (see figure 1). The deployable structure chosen is a

single-fold double cell module designed by Vought Corporation (see figure

2). Two of these modules will be deployed on orbit and joined together

using an interconnect module of eight individually erected structural ele-

ments. The erectable structural elements consist of four longitudinal

elements and four diagonal elements. In order to study the effect of

moment of inertia of a structural element on ease of assembly, two of the

Iongitudinals will be made of lightweight material, and two will be of heavy

material; the diagonals will be made in a similar manner. This difference

in density will result in significantly different moments of inertia for the
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eight erectable elements. Table 1 shows the structural characteristics of

all the elements of the structure.

Four different connector designs will be used as joints between the eight

structural elements and the deployable modules. Sixteen connections will

need to be made (two ends for each of eight elements), so there will be

four uses of each connector design. Table 2 defines the connectors that

are currently being considered for this purpose.

A Launch/Assembly Platform (LAP), will secure the deployable modules in

their folded configuration for launch and will also restrain during launch

and return all other hardware necessary for this experiment. A flight

data recorder will be mounted on the pallet to record structural and ther-

mal data obtained from sensors distributed throughout the structure.

The deployment and assembly of this structure will be performed with the

aid of the Remote Manipulator System (RMS), and the Manned Maneuver-

ing Unit (MMU). Both of these assembly aids will be stowed in their usual

configuration prior to use.
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3.2 Neutral Buoyancy Tests Prior to Flight

The neutral buoyancy tests that will be necessary prior to flight to attain

the objectives listed in section 2, can be divided into three parts. The

initial sequence of tests will be to define flight configuration hardware

and an optimized set of assembly procedures , chosen so that all tasks can

be performed in an identical manner in neutral buoyancy and in flight.

This will enhance the correlation process significantly. The next test

series will be devoted to verification of the hardware design and to fur-

ther definition of the procedures. The third series of tests will be

primarily to train the crew that will be assembling the structure on orbit.

This is especially important so that a baseline timeline can be set up for

comparison with the on-orbit results.

3.3 Test Procedures on orbit

The SADE experiment will take two six-hour EVA sessions to complete:

one day to erect the structure, and one day to disassemble and stow it.

The manpower allocation will be the same on both days: two crewmen will

be EVA, one with the MMU, one without; one crewman on the aft flight

deck, will control the video cameras, direct operations, and operate the

RMS.
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A preliminary set of procedures for erecting the SADE structure is shown

in table 3, along with the primary data that is expected from each step.

This is a "strawman" procedure that will serve primarily as a starting

point for the early neutral buoyancy tests. Results of these early tests

will no doubt modify the procedure to some extent, but the outline does

indicate some of the more important operations that will be performed in

flight:

One deployable module will be unfolded using RMS, the other will be

deployed with the MMU.

Some of the manual assembly of structural elements in the intercon-

nect structure will be performed with the subject in foot restraints,

while some of it will have the subject out of foot restraints.

Subjects will perform controlled alignment motions with structural ele-

ments both in and out of foot restraints, to evaluate the effect of

mass and moment of inertia on body positioning, and to identify

human control laws and applied torque levels as a function of foot

restraints.

A subject will translate along structure, once while carrying hardware

and once without, so that loads imposed on structure by this process

can be measured. Similarly, a subject with MMU will apply loads to

the structure, to quantify these as well.
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3.# Post Flight Tests

After the flight, the structural hardware used on orbit will be inspected

to check for broken mechanisms. In addition, there is also the possibility

of performing further neutral buoyancy tests if necessary; for example, if

something unexpected happens in flight to prevent the crew from follow-

ing established timelines.
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#.0 DATA ACQUISITION

#. I Time and Motion Data

Time and motion data for the two EVA crew members will be the primary

source of the correlation data base. As such, collection of the necessary

information for detailed time and motion analysis will be a high priority.

Besides serving as test conductor (reading off procedures to the EVA

crew), the crew member on the aft flight deck will be responsible for

direction and recording of video tape on the standard shuttle closed cir-

cuit television systems. Available camera angles will consist of the port

and starboard forward and aft payload bay bulkhead mounts, and the RMS

wrist and elbow cameras. It should be noted that RMS cameras will only be

available for data collection when they are not required by the crew mem-

ber in the port aft flight deck for RMS operations. Video tape data will

be supplemented and backed up by a time lapse motion picture camera

mounted in the aft flight deck, running at a rate no less than 1

frame/sec. This film camera will be mounted in such a location that a wide

angle lense will pick up the maximum amount of crew activity, based on

procedures developed in neutral buoyancy.
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Since only one video channel may be recorded at a time, the interior crew

member will be responsible for video mixing, as well as camera alignment.

Experience with neutral buoyancy testing has shown that single-channel

video can result in significant data loss, especially when two test subjects

are working on separate tasks not in close proximity. In order to be

assured of full correlation data, it will be necessary to have full time and

motion data on each of the two EVA crew members. As part of the proce-

dures checklist used in flight, closeups and significant camera angles will

be listed for the camera operator. The time-lapse motion picture camera

will be relied upon for data analysis of the second astronaut during video

close-ups of the first, especially when the second is engaged in clearly

evident activities such as translation. EVA timelines will be optimized to

prevent the scheduling of tasks requiring video closeups when the other

test subject is outside the vision angle of the film camera.

In addition to video and film records, crew members will be encouraged to

give running verbal accounts of the assembly procedure, and their posi-

tion on the timeline. This will allow another form of task time data, and

will provide corroborating data for task times taken from the wide-angle

view of the film camera. Actual time and motion analysis will be performed

postflight: this procedure is covered in the following section.
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q.2 Assembly Techniques

In addition to providing the majority of time and motion data, video tapes

will also provide visual evidence of the relative ease of beam alignment,

connector assembly, and so forth.

Body dynamics relates to the positioning of the body in weightlessness,

and the human phase plane control laws for structural component align-

ment. While assembling the interconnect cell struts, the test subject will

be required to rotate each strut through two 90 degree arcs, and one 180

degree one. These will be done such that the plane through which the

beam is rotated is most nearly perpendicular to the sight vector from the

recording video camera. The zoom setting of the camera will be such that

the test subject's entire body will be visible on the screen. During post

flight analysis, this will permit the beam position to be measured as a

function of time, giving estimates for angular velocity by successive dif-

ferencing and filtering. Image digitization of the resultant body motion

will provide data on the forces applied, both to the beam and to the sub-

ject's work station on the structure.

Hardware evaluation and crew performance are highly subjective areas,

which can best be quantified in terms of assembly time and difficulty.

Completion times for each task will be found from videotapes, and by

verbal marks given by the test subject when starting and completing the
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task. Difficulty of performing the task may be inferred by crew member

cardiopulmonary rates, obtained through the EVA bioinstrumentation. It

is important for this reason to have correlation marks of some sort

between primary data collection media (video tapes and films) and the

tapes of the bioinstrumentation readings. Crew qualitative evaluations

will be given real time onto the audio track of the video tape, and dis-

cussed in more detail during post-flight debriefing.

4.3 Structural Data

Structural data will consist of strain gauge or load cell readings of

stresses in the elements of the structure and of the launch assembly plat-

form, along with accelerometer data from selected nodes and from the

pallet (as an indicator of rigid-body orbiter motions). Sensors will be

mounted to the structural elements prior to launch, to insure proper

attachment procedures. Primary data recording will be performed by an

LDEF experiment power and data system (EPDS), which receives data

from sensors via wires connected by the EVA crew members. Since these

wires cannot (in some cases) be attached until after the structure is com-

plete, the load data during assembly will, if possible, be recorded on MIT

solid state self-contained recorders (SSSCR's). These will be mounted on

each structural element, and will be activated by the EVA crew. The

EPDS will also have to be activated at the beginning of the run. After
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assembly, calibration of the sensors will be performed by loading the

structure at a predetermined point by a known force (such as an MMU

thrust at a specified node). Time of such loading will be noted by the test

conductor, and entered into the flight log for calibration of the instru-

ment recorders after the flight.
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5.0 DATA ANALYSIS

5.1 Assembly Timeline Data Base

For the purposes of analysis, the entire SADE EVA procedure will be bro-

ken clown into parts that are smaller and more specific at each level:

First Level - the full set of extra-vehicular activities will be broken

down into operations (e.g., cell deployment)

Second Level - each operation will be broken down into component

tasks (e.g., release launch restraints for module 1, cell 1)

Third Level - each task will be broken down into component subtasks

(e.g., activate latch safety release)

A data base will thus be established by recording the time for each opera-

tion, task, and subtask each time it is performed either underwater or

on-orbit. A careful comparison can thus be made between the time

required to perform a task in space and that required to perform the

identical task underwater. In addition, time and effort spent on similar

but different tasks in space (such as joining the various connectors) will

be carefully studied.

SADE Final Report Page 52



5.2 Correlation Analysis

Simply comparing task times established in neutral buoyancy with those

obtained on orbit will yield only a qualitative understanding of the differ-

ence between the two environments. A systematic statistical analysis of

the flight experiment data, therefore, will also be performed to obtain

quantitative correlation factors that are directly applicable to other neu-

tral buoyancy tests and other assembly operations. This analysis will be

carried out in the following manner:

A chart showing timelines established on orbit in one column with the

baseline timeline established in neutral buoyancy in a parallel column

will be drawn up, so that it will be very apparent where the two pro-

cedures diverge and where they are most similar.

Numerical factors for each subtask will then be calculated by comput-

ing the ratio of time spent on orbit for the subtask to time spent in

neutral buoyancy for the same subtask. For example: if subtask

2.1.4, ingress foot restraints at work station B, takes 4:25 min on

orbit and 3:36 min in neutral buoyancy, then the task time ratio for

that specific subtask is 1.23.

A more generally meaningful correlation factor will then be calculated

by taking the average time spent for all the repetitions of a generic

subtask. For example, if the foot restraints are ingressed 12 times

during the assembly procedure the average time spent over these 12
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repetitions will be compared with the same average established under-

water.

Multiple regression analyses will be performed for tasks which have

more than one parameter. For example, ingressing foot restraints will

require more or less time depending on local clearances, availability

or absence of hand rails, and so forth. In this case, a time-variant

linear regression analysis would be done, resulting in an equation for

the time required to ingress foot restraints on orbit, as a function of

the time required in neutral buoyancy. A variety of possible fit func-

tions (logarithmic, power, exponential) will be tried for each of these

multiple regressions, and the chosen model will be the curve fit with

the highest coefficient of determination.

Correlations will be performed for selected tasks based on MIT com-

puter models of body motion in weightlessness. For example, the

math model for translating a package indicates that the correct factor

for nondimensionalizing the transport motion is

I (M÷m)/MmDL

where I is the pitch moment of inertia of the EVA subject, M is the

subject mass, m is the manipulated mass, and D and L are functions

of the pressure suit dimensions. For manipulative translations,

therefore, the nondimensionalized transfer times will be correlated

between neutral buoyancy and space, as well as the raw times.

Weighted linear regression correlation will also be performed, with

weighting based on math model information of the specific task. This
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correlation procedure will apply to all tasks which can be accurately

and reliably modeled. All correlations will include the coefficient of

determination of the resultant curve fit.

Based on the correlations obtained from the SADE flight, an EVA neu-

tral buoyancy user's guide will be prepared, with details of extrapo-

lation from SADE results to applicable correlation factors between

general neutral buoyancy operations and expected timelines on-orbit.

5,3 Assembly Anolysis

Body dynamics data will be digitized through the use of an X-Y digitizer

attached to a video monitor, with a stop-motion video playback deck

attached. Where necessary, data will be collected frame-by-frame: most

of the data collection will be sufficient only to categorize gross body

motions, and digitization frequencies will range down to .5 seconds/data

point. Tracking targets on suit joints, backpack, and MMU will be neces-

sary to allow location identification for sufficient accuracy in the

digitizing process. Digitized body data will be stored on disk, and will be

read into the computer for dynamic CAD reconstruction of body motion,

comparison to math models to allow verification, and concurrent computer

simulations with water drag to provide neutral buoyancy correlation inde-

pendent of the time and motion data. At the same time, the beam a_ignment

task data will be digitized, analyzed to provide beam angle as a function
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of time, differenced and filtered to provide angular velocity estimates as a

function of time, and the phase plane control laws will then be generated,

by plotting angular velocity versus angle.

EVA design criteria will be analyzed based heavily on crew comments,

both during and after the assembly procedure. These comments will be

the primary source of data for hardware evaluations from a user point of

view. Video tapes will provide records of task time in performing the dif-

ferent tasks, while crew comments on the video tape will be used to find

subjective reactions, as well as for refreshing the memories of the crew

during post-flight debriefing. This information will be correlated with

bioinstumentation sensor data to quantify the degree of difficulty of each

assembly task. Learning on repetitious tasks will be analyzed in two

ways: a power-law regresssion analysis on the task times (increase in

speed) and on the net decrease in heart rate (decrease in difficulty).

Productivity is the assembly rate at which the structure is completed.

Fatigue will be found from the trends of heart rate or respiration as a

function of time.

5.4 Structural Data Analysis

As mentioned earlier, structural data will be recorded on the LDEF exper-

iment power and data system (EPDS), and possibly on the MIT solid-state
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self contained recorder (SSSCR), if that unit is qualified in time for

flight. Wires for the EPDS sensors must be integrated into the structure,

and connected by the EVA crew members. Data from strain gauges and

accelerometers will be stored in essentially "raw" form in the EPDS.

With the development of the MIT system, data can be recorded in a varie-

ty of different forms, including digital waveform conversion, storage of

Fourier coefficients, peak loads within a time frame, times of all structural

loads exceeding a preset threshhold, and so on. Each SSSCR will be dedi-

cated to its collection technique, and a number of such techniques will be

tested for their utility in structural analysis. All sensors will be inte-

grated on the structure prior to flight. Objectives of the structural loads

study are to quantify loads placed on the structure by maneuvering

around on it, RMS loads, loads during RMS and manual deployment, and

loads in the structure due to a known force, such as a push on the struc-

ture at a given point with the RMS. A further objective of the structural

analysis will be to identify damping, and to validate structural dynamic

models with data returned from flight. Without the SSSCR's, only part of

this data will be obtainable, since it will have.to be stored in raw form,

rather than partly conditioned, and will thus take up more room on tape.

Under these conditions, for example, only some loads data will be

storable, yielding little or no information on structural dynamics and

damping in weightlessness.
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6.0 BENEFITS FROM SADE

The benefits from performing

experiment include

the structural assembly demonstration

An initial demonstration of the capability to both deploy and assemble

structures in space from the shuttle

Statistically meaningful data to allow correlation analysis between neu-

tral buoyancy and zero-g for each category of task and subtask used

in the SADE experiment

A data base for future EVA planning, with experience for timeline

construction of future EVA procedures

Quantitative data on the control laws used by humans in space, and

correlations of manipulative times to allow the estimation of the rela-

tive significance of mass and moment of inertia on-orbit

Validation of math models of the human body in weightlessness, and

indications of the existence of an instinctive adaptation to the

weightless environment

Human factors evaluation of all structural hardware and supporting

equipment, including comparative evaluation of four specific joint

designs, and qualitative conclusions as to the more favorable choices

and importance of connector design criteria
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Structural loads data on components of the assembled and deployed

structure during and after completion, and stresses induced by static

and dynamic loading conditions

Tests of the utility of manual and MMU aided deployment of large

structures.

Verification of the use of the RMS in structural deployment applica-

tions.
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APPENDIX C: STRUCTURAL DYNAMICS ANALYSIS REPORT
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NOMENCLATURE

An underbar denotes a matrix or vector.

A

B

C

E

f

G

H

i

i
P

i
r

I

J

K

L

m

M

M

N

P

S

t

T

T

u

u

U

V

w

W

xyz

XYZ

Cross-sectlonal area

Y dimension of a truss bay

Equivalent stiffness matrix

Young's Modulus

Applied force vector

Shear modulus

Z dimension of a truss bay

Unit vector

Polar mass moment of inertia per unit length

Rotary mass moment of inertia per unit length

Cross-sectlonal area moment of inertia

Cross-sectional polar area moment of inertia

Finite element stiffness matrix

Direction cosine

Length of a bar element or length of one bay

Mass per unit length

Applied moment

Finite element mass matrix

Node number

Applied axial force

Applied shear force

Time

Applied torque

Transformation matrix

Displacement in X direction

Displacement vector

Strain energy

Displacement in Y direction

Displacement in Z direction

Work

Local Cartesian coordinates

Global Cartesian coordinates
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NOMENCLATURE

6 Denotes first

Extensional or

E Strain vector

@ Rotation about X

< Curvature

Total energy

Rotation about Y

Rotation about Z

Natural Frequency

variation

shearing strain

(cont.)
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I. INTRODUCTION

Large space structures are becoming increasingly

important to the exploration and development of space. Many

of these structures, such as the proposed NASA Space Station,

are lattice structures, and will be extremely large and

flexible. Others, such as large antennae or the Space

Telescope, require a high degree of pointing accuracy in

addition to being very flexible, which may necessitate active

control to suppress vibrations (reference I).

Finding the dynamic characteristics of such structures is

a challenging problem. Conventional finite element models

are extremely large and therefore expensive to implement,

which makes them undesirable or impractical, especially in an

advanced design stage. Testing large space structures to

find their dynamic characteristics is impractical for several

reasons. Many will be larger than anyexisting testing

facility, and most " will not be able to support their own

weight on Earth. Structures such as the Space Station will

be built by various contractors which also makes testing

impractical (reference 2).

Controlling large space structures is also a very

difficult task. The problem is compounded by the occurrence

of closely spaced dynamic modes which can cause instabilities

if not considered in controlling the structure. In addition,

the dynamic model chosen for the structure has a profound

effect on the design and performance of the controller

(reference 3).

This thesis is a study of the dynamics of the Structural

Assembly Demonstration Experiment (SADE) truss. SADE is a

proposed Space Shuttle experiment designed to test the

assembly and deployment of structures in space. The SADE

truss consists of seven cubical bays arranged linearly to

form a beam-like structure extending from the Shuttle bay,

with a tip mass at the free end. The truss resembles a

shorter version of the long central mast in the current
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proposed Space Station design.

The purpose of this thesis is to evaluate several methods

for finding the dynamic characteristics of the SADE truss and

to determine the effects of individual bar vibrations on the

dynamic modes of a beam-like truss. Several finite element

models are set up first, to find the modes of the SADE

truss. These results are considered to be a reliable basis

for comparison with subsequent results. Next, several

methods are employed to determine the stiffness properties of

the truss. These stiffness properties are then used in

continuum models, yielding bending, torsional, and axial

frequencies for comparison with finite element results. The

stiffness properties are also used to set up a stiffness

matrix for one bay of the truss. This super-finite element

is employed in constructing a much smaller finite element

model of the SADE truss from which the dynamic modes of the

truss are found again. To study the effects of bar

vibrations on the modes of a beam-like truss, and to estimate

the global modes of the SADE truss, a two-dimensional version

of the SADE truss is considered. This planar truss is

analyzed with two standard finite element models and with a

refined finite element model with additional nodes at bar

midpoints. Finally, a two-dimensional truss with no lumped

masses is considered to more generally assess the effects of

individual bar vibrations on the global modes of a truss.

This truss is analyzed with two standard finite element

models, a refined finite element model with additional nodes

at bar midpoints, and a finite element model with exact

dynamic stiffness coefficients.
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2. FINITE ELEMENT METHODS

2.1 DESCRIPTION OF SADE TRUSS

The SADE truss consists of seven cubical bays arranged in

a row to form a beam-like structure three-hundred and

eighty-five inches long (see figure i). The four nodes at

the restrained end of the truss are pinned, so the structure

resembles a cantilevered beam, although rotational degrees of

freedom are allowed at these four restrained nodes. The

arrangement of the bar elements can be seen in Figure i and

is specified in Table 1.

The bar elements are made from 6061 aluminum. Each bar

has a circular cross section with an outer diameter of 2.0

inches and a thickness of 0.072 inches. The length of the

shorter bars is 55.0 inches (the length of one bay) while the

length of the longer diagonal members is 55.0_ inches.

The mass of the truss is 442.00 Ibm. The mass of the

bars is 259.65 ibm. The shorter bars have a mass of 2.3411

ibm while the mass of the longer bars is 3.3109 ib m . The

remaining 182.35 ibm is

amount of joint mass

proportional to the number

at that node (see Table 2).

allocated to the Joints. The

placed at a specific node is

of bar elements which are joined

Thus, node i0 has twice as much

joint mass as node 2 since eight bars are joined at node I0

as opposed to four bars at node 2. In addition, there is a

tip mass of 220.46 ibm at the free end of the truss. This

tip mass is equally divided between the four nodes at the

free end (nodes 29, 30, 31, and 32).

2.2 PIN-JOINTED MODEL

The first model of the SADE truss considered was a

pln-jointed finite element model with a consistent mass

matrix. This model allows three degrees of freedom at each

node. The three degrees of freedom are the translational
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FIGURE 1

The SADE Truss
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TABLE 1

SADE Bar Connectivities (From node i to node j)

i - 2 10 - 13 20 - 24

i - 3 i0 - 14 21 - 22

i - 5 ii - 12 21 - 23

I - 6 ll - 15 21 - 25

l_- 7 12 - 14 21 - 27

2 - 3 12 - 15 22 - 23

2 - 4 12 - 16 22 - 24

2 - 6 13 - 14 22 - 25

3 - 4 13 - 15 22 - 26

3 - 7 13 - 17 _, 23 - 24

3 - 8 13 - 18 23 - 27

4 - 6 13 - 19 24 - 26

4 - 8 14 - 15 24 - 27

5 - 6 14 - 16 24 - 28

5 - 7 14 - 18 25 - 26

5 - 9 15 - 16 25 - 27

5 - i0 15 - 19 25 - 29

5 - ii 15 - 20 25 - 30

6 - 7 16 - 18 25 - 31

6 - 8 16 - 20 26 - 27

6 - i0 17 - 18 26 - 28

7 - 8 17 - 19 26 - 30

7 - ll 17 - 21 27 - 28

7 - 12 17 - 22 27 - 31

8 - i0 17 - 23 27 - 32

8 - 12 18 - 19 28 - 30

9 - i0 18 - 20 28 - 32

9 - ll 18 - 22 29 - 30

9 - 13 19 - 20 29 - 31

9 - 15 19 - 23 30 - 31

i0 - Ii 19 - 24 30 - 32

10 - 12 20 - 22 31 - 32
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TABLE 2

Node

1

2

3

4

5

6

7

8

9

10

11

12

13

14

lS

16

Joint Mass

(Ib-sec2/in)

1.2290xi0-2

9.832 xl0 -3

1.2290xi0 -2

9.832 xl0 -3

1.4747xi0-2

1.7205xi0-2

1.7205xi0-2

1.4747xi0 -2

1.2290xi0-2

1.9663xi0 -2

1.4747xi0 -2

1.7205xi0-2

1.7205xi0-2

1.4747xi0-2

1.9663xi0-2

1.2290xi0-2

SADE Joint Masses

Node

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Joint Mass

(Ib-sec2/in)

1.4747xi0-2

1.7205xi0-2

1.7205XI0-2

1.4747XI0-2

1.2290xi0-2

1.9663Xi0-2

1.4747XI0-2

1.7205XI0-2

1.7205Xi0 -2

1.4747XI0-2

1.9663Xi0-2

1.2290Xi0-2

7.374 XI0 -3

i.4747XI0-2

1.2290XI0-2

9.832 Xl0 -3
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TABLE 3

SADE Bar Properties

EI (bending stiffness) - 2.0263x106 ib-in 2

GJ (torsional stiffness) = 1.5236xi06 ib-in 2

EA (axial stiffness) = 4.3610x106 ib

m (mass per unit length) = 1.1016x10 -4 Ib-sec2/in

Ip/A (polar area moment of inertia divided by cross

sectional area) - 9.2930xi0 -1 in 2

Diagonal bar length is 55_in. Shorter bar length is 55 in.
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displacements in the X, Y, and Z coordinate directions.

Therefore, this model does not take into account the bending

or torsional stiffness of the bar elements.

Since the truss contains thirty-two nodes, there are

ninety-six unrestrained degrees of freedom in the model.

Thus, the unrestrained displacement vector _ is 96xi while

the unrestrained stiffness and mass matrices are each 96x96.

The X displacement at node N is degree of freedom 3N-2, while

the Y displacement is degree of freedom 3N-I and the Z

displacement is degree of freedom 3N.

A typical bar element is shown in Figure 2. The local

coordinates are lowercase and the global coordinates are

uppercase. The degrees of freedom in local coordinates of

the bar are numbered. The element stiffness matrix for a bar

in local coordinates is

1

0

" EA/L 0
-i

0

0

m

where E

0 0 -i

0 0 0

0 0 0

0 0 1

0 0 0

0 0 0

u

0 0

0 0

0 0

0 0

0 0

0 0

(2.l)

is Young's modulus, A is the cross sectional area of

the bar, and L is the length of the bar.

The element stiffness matrix must be transferred to

global coordinates. Let ix be a unit vector along the bar

from bar node 1 to bar node 2. iy is a unit vector

perpendicular to ix and the unit vector iz completes the

right handed system for the local bar axes. Now define a 3x3

matrix t:
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t I

ix'iy ix'iz

iy'iy iy'iz

iz'iy iZ'!z

i Z are unit

(2.2)

where iX , !y, and vectors in the global

coordinate system along the coordinate axes. To find the

elements of the direction cosine matrix t above, let

i " _!x + 81y + 71 z (2.3)

where

a=(X2-XI) /n 8=(Y2-YI)/L 7"(Z2-Z I) /L

L = (X2_X1)2 + (y2_Y1)2 + (Z2_Zl)2

(X2,Y2,Z2) is the global coordinate of bar node 2 while

(XI,YI,ZI) is the global coordinate of bar node i.

Also, let

ly = a! X + b!y (2.4)

Here, iy needs no Z component since it is perpendicular to

ix, and is assumed to lie in the X-Y plane. Since iy is

a unit vector,

2 +b2 = 1 (2.5)

or

b 2 = 1 - a 2 (2.6)

Since iy is perpendicular to ix '

iy'ix = 0
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Therefore,

which gives

or

The negative

(2.8) we have

as + b_ - 0

_2
2

a

a 2 + B2

_(X |

a - - (y2_yz) 2

2_XI )2+ (y2_Yl) 2

sign is chosen as the convention

(2.8)

(2.9)

(2.1o)

here. From

(2.11)

or

b - X2-Xq / (X2_Xz)2 '

y2_Yl_(Y2_Yl )2+ (X2_Xl) 2

(2.12)

However, if _=0

the condition that ly has unit

perpendicular to ix. We have

terms of the global coordinates.

cross product of i x and ly:

then a=0 and we set b=l, which satisfies both

magnitude and that !y is

now defined ix and !y in

For ! z we take the vector

iZ = iX X !y

" -bY!x + aT!y +

(2.13)

Since we have defined ix, !y, and iz

global coordinates we can rewrite (2.2) as

in terms of the
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t

m

a b 0

-by aY b_-a_

(2.14)

where a, _, and y are defined in (2.3), a is given by (2.10),

and b is given by (2.12).

The element stiffness matrix in global coordinates _XYZ

can now be found from the element stiffness matrix in local

coordinates. Let

6x6

where the

(reference 4).

m i

i: J

3X3 J

I t_

I 3x3

terms in

Then

(2.1s)

the off-diagonal blocks are all zero

_XYZ " TT _xyz (2.16)

The element stiffness matrices in global coordinates are

assembled to form the unrestrained structure stiffness matrix

K by adding their stiffnesses to the proper elements of K.

This is done by considering the appropriate degrees of

freedom.

The unrestrained structure consistent mass matrix Mc is

formed in a similar manner. The element mass matrix in local

coordinates is
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Mxy z - mL

n

i13 0 0 i16 0

0 I/3 0 0 i16

0 0 x13 0 0

x16 0 0 x13 0

0 1/6 0 0 1/3

0 0 1/6 0 0

where m is the mass per unit length of the

m

0

0

1/6 (2.17)

0

0

1/_

bar, and allowance

is made for bar rotations as well as bar stretching. This

element mass matrix is converted to global coordinates with

the same transformation used for the element stiffness

matrix:

_XYZ " 2T Mxyz (2.18)

The element mass matrices in global coordinates are then

assembled to form the unrestrained structure consistent mass

matrix Mc-

To get the unrestrained structure mass matrix _, the

Joint masses (and tip masses) at the nodes must be added to

_c" The joint masses are modeled as point masses.

Therefore, the point mass at node N is added to elements

(3N-2,3N-2), (3N-I,3N-I), and (3N,3N) of Mc, corresponding

to the three translational degrees of freedom at that node.

The structure is restrained in degrees of freedom I

through 12. Therefore, the rows and columns of _ and M

corresponding to these degrees of freedom are removed to form

the restrained structure stiffness matrix K and the

restrained structure mass matrix M. Also, the first twelve

entries of the unrestrained displacement vector u are removed

(and set equal to zero) to form the restrained displacement

vector u.

The equation of motion of the truss is

M_ + K_uu- O (2.19)
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Assuming u=Ucos(wt+_), where _ is a phase angle, we obtain

(K-_2M) U = O (2.20)

The characteristic equation

det (K-_2M) -- 0 (2.21)

is solved using the method of subspace iteration to obtain

the desired n1"_ber of lowest eigenvalues (squared natural

2 These are used in (2 20) to find thefrequencies) _r •

associated eigenvectors _, which specify the mode shapes.

The computer program that assembles the restrained

structure stiffness and mass matrices (which is designed to

work for a general space truss) is presented in Appendix D.

The natural frequencies and mode shapes were found by using

the output from this program in the Finite Element Analysis

Basic Library of the Aeroelastic and Structures Research

Laboratory at MIT. The eigenvectors for the first twelve

modes are presented in Appendix C. The natural frequencies

for the first sixteen modes and mode shape descriptions for

the first twelve modes are presented in Table 4. The modes

are well spaced except that the bending modes occur in

closely spaced pairs. Also, if the truss is considered as a

beam, the neutral axis in bending passes through diagonally

opposite nodes. Another way of stating this is that the

direction of bending motion is at a forty-five degree angle

to the X _nd Y axes (see Figure 3).

This analysis was also performed using a lumped mass

matrix formed by concentrating one-half of the mass of each

bar element at each of the nodes at its ends. This method

yielded results which were very close to those obtained with

the consistent mass matrix (with concentrated joint masses),

especially in the lower modes.
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FIGURE 2

Pin-Jointed Bar Element
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FIGURE 3

First Bending Mode Pair of SADE Truss
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2.3 RIGID-JOINTED MODEL

The rigid-jointed model of the SADE truss allows six

degrees of freedom at each node. Three of these are the

translations in the coordinate directions. The other three

degrees of freedom are the rotations about axes in the

coordinate directions. Therefore, this model takes into

account the bending and torsional stiffness of the bar

elements.

There are now one-hundred and ninety-two degrees of

freedom in the model since the truss contains thirty-two

nodes. The X, Y, and Z displacements at node N are degrees

of freedom 6N-5, 6N-4, and 6N-3, respectively. The rotations

about axes in the X, Y, and Z directions are denoted by _, ¢,

and _ , and the degrees of freedom associated with these

rotations at node N are 6N-2, 6N-I, and 6N, respectively.

A typical element is shown in Figure 4. The 12x12

element stiffness and consistent mass matrices (in local

coordinates) are given by Craig (reference 5, pp. 391,392):

kb

_xYZ m "- I " "
(2.22)

where

k
--a

EA/L

SADE Final Report
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k b

-EA/L

-12El /L 3
z

-6El /L 2
Z

-12El /L
Y

6El /L 2
Y

-GJ/L

-6El /L
Y

2El /L
Y

6El /L 2
z

2El /L
z

N

EA/L

k d "

k_c = kb T

12El /L 3
z

3 2
12El /L 6El /L

Y Y

GJ/L

6El /L 2 4El /L
Y Y

-6EIz/L2 I

-6El /L 2 4El /L
z z

_J

and ly and I z are the area moments of inertia of the bar

cross section about the y and z axes, O is the shear

stiffness, and J is the polar area moment of inertia of the

bar cross section; also,

Mxy z = mL/420

m

I_ml { _mb

t

t md
i

(2.23)

where
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_a

_mb -

_md "

D

140

m

I

m

156

70

140

22L

156

1401 /A
P

-22L

22L

-22L

4L 2

4L 2

54

13L

54

-13L

701 /A
P

13L

_3L 2

-13L

_3L 2

156

156

22L

-22L

1401 /A
P

22L

2
4L

-22L

4L 2

mC " mb T
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where

cross

according to (2.16) and (2.18), except now

Ip is the polar mass moment of inertia of the bar

section. The element matrices are again transformed

T l

12x12

3x3

I=

3x3

m

_t

3x3

(2.24)

t

3x3

m

The joint mass at a node is added to the diagonal

elements of the unrestrained structure consistent mass matrix

which correspond to the translational degrees of freedom at

that node. Thus, the joint mass at node N is added to

elements (6N-5,6N-5), (6N-4,6N-4), and (6N-3/6N-3) of _c"

Since the joint masses are assumed to be point masses they

have zero moment of inertia, and consequently no lumped

quantities are added to the diagonal elements of Mc which

correspond to rotational degrees of freedom.

It is assumed that the four nodes at the base of the

truss are pinned and not clamped.

freedom i, 2, 3, 7, 8, 9, 13, 14, 15, 19,

restrained. The rows and columns

structure stiffness and mass matrices

Therefore, degrees of

20, and 21 are now

of the unrestrained

and the rows of the

unrestrained displacement vector corresponding to these

degrees of freedom are removed to form the restrained

system. The resulting equation of motion is then solved

using the same techniques as in the pin-jointed analysis to

obtain natural frequencies and mode shapes.

The natural frequencies for the lowest sixteen modes

again are presented in Table 4 and the eigenvectors are given

in Appendix C. The frequency results correlate very well

with those from the pin-jointed analysis in the lower modes.
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As the mode number increases, the frequencies obtained using

the rigid-Jointed model become somewhat lower than those from

the pin-Jointed model. This is probably due to the influence

of local bar element natural frequencies on the global

structural modes. Note, however, that the last several modes

of the rigid-Jointed model are now very closely spaced. This

phenomenon is associated with the vibrations relative to the

joints of the individual bar elements and will be addressed

in Chapters 6 and 7.

FIGURE 4

Rigid-Jointed Bar Element
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8_ 7 Z

2._ _6 __ -_ Global Coordinate:
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y axis is chosen to lie in a plane parallel to X-Y plane
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3. CONTINIAD{METHODS

3.1 GENERATION OF STIFFNESS PROPERTIES

If a beam-like truss is considered to be a beam in

bending then a continuum equation of motion from beam theory

can be used to find the natural frequencies for the bending

modes of the truss. Similarly, continuum models for a

torsional rod and an axial bar can be used to find the

natural frequencies of the truss in its torsional and axial

modes. However, to use these continuum models we must first

define continuum stiffness and inertia properties for the

truss. For bending, we need to define the bending stiffness

EI and the shear stiffness GA if Timoshenko beam theory is

used. The inertia properties needed are an equivalent mass

per unit length m and an eqivalent rotary mass moment of

inertia per unit length ir. For torsion, a torsional

stiffness GJ must be defined as well as a mass per unit

length and a polar mass moment of inertia per unit length

ip. For axial vibrations, we need an axial stiffness EA

as well as m.

Defining the equivalent inertia properties of the SADE

truss is relatively straightforward. The analyses used to

define m, it, and ip are presented in sections 3.2

through 3.5 as these quantities are needed. However,

methods for finding the continuum stifness properties are

not as obvious. Two methods are presented in this section.

The first finds the stiffness properties by performing a

static pin-jointed finite element analysis of one bay of the

truss. The second considers the energy of the bar elements

in one bay and is based on the work of Noor, Anderson, and

Greene (reference 6).

A. Static Pin-Jointed Truss Analysis for One Bay

Consider the bay at the base of the SADE truss. This
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bay extends from X=0 inches to X=55 inches (see Figure 1).

It is bounded by nodes i, 2, 3, and 4 at the fixed (X=0) end

and by nodes 5, 6, 7, and 8 at the free (X=55 inches) end.

To analyze the stiffness properties of the bay we restrain

it at the fixed end by pinning nodes 1 through 4.

The restrained stiffness matrix _ for the bay is found

using the pin-jointed finite element procedure described in

section 2.2. This matrix is 12x12 since there are four free

nodes with three translational degrees of freedom at each

node. Thus, degrees of freedom i, 4, 7, and i0 are the X

displacements at nodes 5, 6, 7, and 8, respectively.

Degrees of freedom 2, 5, 8, and Ii are the Y displacements

and degrees of freedom 3, 6, 9, and 12 are the Z

displacements at these nodes.

Appropriate forces can be applied at the free end of the

bay by way of a 12xi force vector _. We can find the

corresponding 12xi displacement vector u according to

Ku ,, f or u ,, _K-if (3.1)

Once _ is determined, beam theory equations can be used to

find the continuum stiffness properties of the bay.

For example, consider placing a pure moment My (in the

Y direction using the right hand rule) on the free end of

the bay. This can be accomplished by letting

fT . [-i00 0 0 I00 0 0 -i00 0 0 i00 0 0] ib (3.2)

The magnitude of the moment is chosen with regard to purely

numerical considerations; any value would do in theory. The

above value of _ gives My=11000 in-lb. We can find the

corresponding displacement vector from (3.1):
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U I

-1.26117E-03
f.26117E-03

-t.26119E-03
1.26118E-03
1.26119E-03

-1.26119E-03
-1.26117E-03

|.26117E-03
-1.26121E-03

t.26t18E-03
1.26tlgE-03

-t.26121E-03

in (3.3)

From beam theory we have

My = EIy<y - EIyz< Z (3.4)

MZ =-EIyz<Y - EIz<z (3.5)

where M Z (which is zero for now) is the moment on the free

end of the bay in the Z direction, EIy (EIz) is the

bending stiffness about the Y (Z) axis, EIyz is a coupling

term, and <y ( < Z) is the curvature about the Y (Z)

axis. <y and <Z are approximated by

Ky =

+ u +
Ux6 X8 Ux5 Ux7 (3.6)

2HL 2HL

u + u, + ux
X6 X5 Ux8 7

<Z = - (3.7)
2BL 2BL

where uXN is the X displacement at node N, L is the X

dimension of the bay, H is the Z dimension of the bay, and B

is the Y dimension of the bay (L=H=B in this case). We now

have <y, <Z, and My with MZ=0. Similarly, we can

determine < y and < Z with MZ=II000 in-lb and My=0 by

letting

fT = [i00 0 0 i00 0 0 -I00 0 0 -i00 0 0] Ib (3.o)

which yields
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U I

1.26117E-03

1.7 t793E-03

-6.85!17E-04

1.02256E-03

6.85t17E-04

-6.85117E-04

-1.38048E-03

1.71793E-03

6.85t45E-04

-t.14t87E-03
6.85117E-04

8.04447E-04

in (3.9)

The system defined by (3.4)

separate times, the first

MZ-0, using the corresponding

the second time with MZ-II000

new values of K y and K

EIy'l.3192X10 I0 ib-in 2,

and EIyz-0.

and (3.5) can be solved two

time with My-ll000 in-lb and

values of K ¥ and K Z' and

in-lb and My=0 using the

Z" Doing this yields

EIz=I.3847xI0 I0 ib-in 2,

For the shear stiffness the equations to be solved are

+ dv L 1 S (3.10)
-2"" d"X" _ySy . GAy-----ZZ

@+dw 1 1

_" d'-'X"" G--_-yzSy + _zSz (3.11)

where _ and _ are rotations about Z and Y, respectively, at

X=L, and the terms on the left side of the equations are

shear strains. Also, GAy (GAz) is the shear stiffness

in the Y (Z) direction, 1/GAyz is the coupling term, Sy

(Sz) is the shear force in the Y (Z) direction and v (w)

is the deflection along the length of the bay in the Y (Z)

direction, dv/dX, dw/dX, _, and _ are approximated by

Uy + Uy + Uy + u
d__v_v= 5 6 7 Y8 (3.12)
dX 4L
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u z + u z + Uz7 + u z
d w = 5 6 8 (3 13)
dX 4L "

u + u Ux5 + uX 6 X 8 X 7
= (3.14)

2L 2L

+ u + u

= Ux6 X5 _ Ux8 X7 (3.15)

2L 2L

The analysis procedure is the same as for the bending

stiffness. We solve the system defined by (3.10) and (3.11)

twice, once with Sy=200 Ib and SZ=0, and next with

SZ=200 Ib and Sy=O. For Sy=200 ib we set

fT == [0 50 0 0 50 0 0 50 0 0 50 0] ib (3.16)

with which we can use (3.1) to find

U I

O.O0000E÷O0

5.68727E-03

-9.73155E-04

1. 14187£-03

4 54028E-03

-9 73155E-04

-1 32083E-03 1

5 05668E-03 1

-2 88033E-04 t

5 96540E-05 1

5 t7087E-03 i

__-2 28380E-04]

in (3.17)

For SZ=200 ib,

fT = [0-.0 50 0 0 50 0 0 50 0 0 50] ib (3.lS)
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U .

O. O0000E ÷00

- I. 14 155E-04

5.3t492E-03

-1.20154£-03

-1.1172_E-03
4.68434£-03

2.98t83£-05

-1.14155E-04

5.60306E-03
-1.29104E-03

-t.11721E-03

4.94263E-03

in (3.19)

Using these results for u in (3.10) and (3.11) we find that

GAy=2.1511xl06 lb, GAz=2.1417x106 lb, and

GAyz--I.7866x107 lb.

We have now determined the stiffnesses needed for a

continuum dynamic model of the beam-like truss in bending.

However, such a model requires that the neutral axis for

bending is defined. The finite element results of Chapter 2

showed that the neutral axes for the bending mode pairs are

at a forty-five degree angle to the coordinate Y and Z

directions. Bending about these neutral axes is assumed in

the continuum model. A Mohr's circle transformation on the

shear stiffnesses shows that the principal axes for shear

are also at forty-five degree angles to the Y and Z axes,

which is where the coupling term I/GAyz equals zero. The

first principal axis is at 8-135 ° , where 8 is the angle

about the X axis as measured from the Y axis (see Figure 3).

The shear stiffness associated with this direction is

GAl-l.9161xl06 lb. The other principal axis for shear

is at 8 =45 ° and the shear stiffness associated with this

direction is GA2=2.4394xI06 lb. The principal axes for

the bending stiffnesses are the Y and Z axes since EIyz=0.

If we denote EI 1 as the bending stiffness at 8 -135 ° and

EI 2 as the bending stiffness at 8 =45 °, we find that

EII=EI2=EI=I.3520xI0 I0 Ib-in 2 . Thus, the change in

the bending stiffness is less than three percent as the axes

are rotated. This is due to the fact that most of the

bending stiffness is provided by the longitudinal (X-X)

bars. If we take a cross section of the truss and calculate
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the bending stiffness

bars, we find that EIy =

= 1.3192xi0 I0 ib-in 2.

The torsional stiffness

equation

considering only the longitudinal

EI Z = EI 1 = EI 2

GJ is found by using the

e = T_A (3.20)
GJ

where e is the angle of twist of the bay about the X axis.

A torque T of -1.1(106) in-lb produces an angle which is

numerically reasonable for computational considerations.

This torque can be produced by setting

fT . [0 -5 5 0 5 5 0 -5 -5 0 5 -5] xl0 3 ib (3.21)

which yields

U ml

0 O0000E+O0

-5 57312E-Or
4 05366E-01

5 96678E-03

3 7ttt8E-O!

3 42308E-01

1 29101E-01

-4.g4253E-O!

-5.31502E-01

t.23138E-Ot

4.34177E-0!
-4.71425E-01

in (3.22)

8 can be found by considering the Y and Z components of

and ignoring the X components. We can then define e to be

the average of the angles of rotation in the Y-Z plane of

each of the four nodes at the free end of the bay. The

angle of rotation of a node can be determined with vector

analysis. We know the components of the vector which

extends from the center of the bay cross section (in the Y-Z

plane at X=L) to the undisplaced node. Since the Y and Z

components of u have been found, we also know the components

of the vector which extends from the bay center to the

displaced node. The angle between these two vectors is the
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angle of rotation of the node and can be found by taking the

dot product of the vectors. Once this is done for all four

nodes, 8 is determined and from (3.20) we find

GJ=3.6923xlO 9 ib-in 2.

For EA we use the equation

PL

EA (3.23)

where P-400 Ib is a force in the X direction.

to the bay by setting

_T . [100 0 0 100 0 0 100 0 0 100 0 0] ib

which yields

U I

1.26117E-03

-8.04441E-04

-6 85137E-04

I 02257E'03

6 85136E-04

-6 85137E-04

1 14f87E-03

-8 0444tE*04

-1.83728E-03

J.38049E-03

6.85137E-04

-1.7t797Eo03

(3.24)

P is applied

in (3.2s)

u is simply the average of the four X displacements

from (3.23) we find EA=I.831x107 lb.

in u, so

B. Energy of Bars Method for One Bay

The method for deriving the continuum stiffness

properties of the SADE truss outlined below is based on the

work of Noor, Anderson, and Greene (reference 6). First, we

must place a new set of coordinate axes (x,y,z) on the bay

considered in the previous article. These axes are placed

at the stiffness center of the bay at the cross section at

X=27.5 inches (the center of the bay). If we let a

subscript 0 denote the location of the new coordinate system
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then X0=27.5 inches and YO and Z 0 will be determined

later.

For now, the

continuous medium.

displacements of

bay is assumed to be made up of a

Let u, v, and w denote the translational

a point on the cross section (in the xyz

system) and 0, _, and _ denote the corresponding rotations

about axes in the x, y, and z coordinate directions. Also,

let e20 and e30 be the extensional strains in the y

and z directions at y=z=O and 2 e 230 be the shearing

strain in the y-z plane at y=z=O. For any point on the

cross section we assume

0
u = u - y_ + z¢

0 0 0
v = v + Y_2 + z(-9+½2£23 ) (3.26)

0 0 0
w = w + y(@+½2_23 ) + z6.J

where a superscript

that u 0 v 0 w 0
8 I l

0
2e23 are functions of x

the cross section.

Using the equations

0 denotes

0,

only

y=z=O. It is also assumed

0 e 0 and_' _' _2 ' 3 '

and therefore constant in

of elasticity, the strain in the

cross section can be written as

E
du O

Ii " _x -

0

I

0

e22 = _2

0

e33 = e 3

d__+ dc
Ydx Zdx-x

0

Y_2 + z_3

(3.27)

(3.2s)

(3.29)
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2e12

0 30 )
dv 0 d_ 2 dO+ d(2e2 )

= -_ + d"_" + Yd-x"x + Z(-d--x dx

0
= 2g +

12

dg20 0 d(e O)

Y_ + z(_< 1 +½ _ 23 ) (3.30)

dw 0 d9 d(2c23 O) de30
= -- + y ) +13 @ + dx (_xx+½ dx Zd--x---

0 0 t d(2e230) d_30
= 2e13 + Y(<I +_ d_ ) + Zd--x--'-

(3.3l)

0 (3.32)
2E23 - 2E23

where the subscripts I, 2, and 3 refer to the x, y, and z

directions, respectively. If the distortion of the cross

section is ignored, (3.30) and (3.31) can be rewritten as

0 0
2_12 = 2e12 - z< I (3.33)

0 0
2_13 = 2c13 + Y_I (3.34)

The extensional strain c in an arbitrary

be written as

direction can

3 3

= E 7 eij£i _. (3 35)
t=[ J=l J

where £ i is the direction cosine

direction to the i

components given in

cross section does not

e33 = O. and 2 e23=0,

strain c in any

direction and

(3.27) to (3.34).

change shape,

and we can write

arbitrarily directed bar as

from the arbitrary

e ij are the strain

Now if we assume the

we can set e22=0,

the extensional

T
E =,, a g (3.36)

where

JT 2 £1£2 £1£3a = I
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_c - Ii 2e12 2_13

Considering (3.27), (3.33), and (3.34), we have

(3.38)

1 -y z 0 0 0

0 0 0 I 0 -z

0 0 0 0 1 y

_EAE_A

c
l

<2

0

<3

2_
12

2£13

0

<i

m

0

(3.39)

The potential energy U of the bay can be expressed by

summing the energy of all the included bars as

k bars 2

U = ½ E EkAkLk£ k

k T T

= ½ I mkAk tk! k aka k !k

k

= ½ _ EkAkLk£ATEAkTakakTEA--- -- -- -- k--EA

where the quantities included in the summation

kth bar. U can also be expressed as

(3.40)

are for the

U = ½L__ATCE A (3.41)
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where an L outside of the summation is the length of the

and

bay

C

m

EA

C21 El Z

C31 C32

C41 C42

C51 C52

C61 C62

E1
Y

C43 GAy

C53 C54

C63 C64

SYMMETRIC

GA Z

C65

(3.42)

where the off-diagonal elements

Comparing (3.40) and (3.41) yields

are coupling terms.

k
1 T T

_C ,, i" _ EkAkLkEA K aka k EAk
(3.43)

To find Z0,

we choose

the Z location of the bay coordinate axes,

31

k
4

= Z EkAkLkZk£ 1 = 0
k (3.44)

where Zk=Zk-Z0

is its midpoint.

and the reference point for every

This results in

bar
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k 4

Z EkAkLkZkZI

Z0 = k (3.45)
k 4

EkAkLk£1
k

Similarly, for ¥0 we choose C21=0, which yields

k 4

Z EkAkLkYk£ 1

YO = k (3.46)
k 4

Z EkAkLkZ I
k

C_

For the bay of the SADE truss being considered,

f2.36116E+07 6.9358tE-08 -6.9358tE-08 O.OOOOOE+OO 3.08372E+06

8. 48022E+07 7

6.93581E-08 1.55242E+10 O.O0000E+O0 O.O0000E+O0 1.08372E-08 -2.33206E+09|
6.93581E-08 O.O0000E+O0 1.55242E+10 -8.48022E+07 -1.09556E-08 -7.62939E-07 /
O.O0000E+O0 O.O0000E+O0 -8.48022E+07 3.08372E+06 O.O0000E+O0 1.73395E-08 /

3.08372E+06 1.08372E-08 -t.09556E-08 O.O0000E+O0 3.08372E÷06 -1.73395E-08|

8.48022E+07 -2.33206E+09 -7.62939E-07 1.73395E-08 -1.73395E-08 4.66412E+OgJ

(3.47)

where the units are in pounds, inches,

stiffness terms on the diagonal of

favorably with those obtained from

analysis of one bay.

and radians. The

the C matrix compare

the finite element

Ce Comparison of the Two Methods for Stiffness Property

Determination

A direct comparison between the two methods can be made

by transforming the results obtained with the finite element

anaysis to the form of the C matrix. We have already found

the 12x12 restrained stiffness matrix for the bay using the

methods of Chapter 2. A different restrained stiffness

matrix can be derived for the bay if we consider (3.1) where

now
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Therefore, K is now 6x6. The elements of K -I can be found

by considering the forces in _ to be applied one at a time,

and determining each of the resulting components of u. For

example, P has been applied to the bay through (3.24).

Equation (3.25) gives the corresponding deflections. These

can be used to find the elements of the new 6xl displacement

vector 2. For u, v, or w, we simply average the X, Y, or Z

deflections at the four free nodes. _ and _ are given by

(3.14) and (3.15). e is found by considering the rotations

of the four free nodes as is described in the derivation of

GJ in article A.

We have now determined the first column of K-l:

(K-l) il = ui/P i=l, 6 (3.50)

By applying the other five forces one at a time the other

five columns of K -I can be found:

3.00381E-06 -5.423_8E-09 4.54546E-13 -t.49130E-07 -3.07845E-OS -5.86831E-08 1

-5.42318E-09 3.97197E-09 O,O0000E+00 t.09229E-07 2.71300E-09 2.03531E-09|

4.54_46E-13 O.00000E+O0 4.16917E-Og 1.14653E-07 -1.14654E-07 -3.12397E-14|

-1.49_30E-07 t.O9229E-07 t,14653E-07 2.55689E-05 -3.07840E-06 _.59704E-08_
-3.07845E-06 2.71300E-09 -1.14654E-07 -3.07840E-06 2.56812E-05 80120E-08|

4.03524E-08 3.16811E-09 -3.08491E-10 6.38888E-08 4.79282E-08 1:48957E-08!
J

(3.s1)

where the units are in pounds, inches, and radians. The

symmetry is very good except for the sixth row and column.

We replace the sixth row with the sixth column and round off

the other elements where needed toobtain symmetry. The

elements of the sixth column are more reliable than those of

the sixth row because the terms in the sixth row represent

bay rotations about the X axis. The bay does not rotate

uniformly, except when a torque is applied. For example,
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when Sy is applied node 6 rotates positively but node 8

rotates negatively, and the definition of bay rotation does

not make sense.

The symmetric K-I can be inverted to obtain

r4.t5378E+O'3 -2.16980E÷05 1.45828E÷06 6.41260E-02 5,30286E÷04 t.45955E+067

_2.16980E+05 3.09879E÷08 3.99367E÷07 -1.41664E+06 3.56055E+04 -3.80114E+07|

{1.45828E+06 3.99367E+07 3.17855E+08 -1,41665E+06 1.41966E÷06 8,29681E+04|
_= |6.04642E-02 -1.41664E+06 -1.41665E+06 5.15143E+04 "4.89010E-03 -1.37428£+00|

|5.30286E+04 3.56055E+04 1.41966E+06 -2,46706E-03 5, 16232E+04 3,0001_E÷03|

Lt.45955E+06 -3.80114E+07 8.29711E+04 -1.25984E+00 3.00033E+03 7.80655E+O7J

(3.52)

where the units are in pounds, inches, and radians.

can be transformed to C by relating the strains iA

in the energy method as defined in (3.39) to the

displacements u in the finite element me_hod as defined in

(3.49). In matrix form, the strains & A are approximated

by

0

-i

0
<2

0

<3

0
2£

!2

0
2__

13

0

i

I/L

I/L

ilL

-i/2 IlL

1/2 1/L

I/L

u

v

or

EA = R/_ (3.s3)

We already have an expression for the potential energy of
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the bay in (3.41). The potential

expressed as

energy can also be

u - _uTKu - ½eATR-TKRc-- A

Comparing (3.41) and (3.54) yields

(3.54)

I 1
C " T(_R-TKR-_ )

(3.55)

Substituting the values for L, B, and K, we obtain

C_ r I2.28458E+07 -1.19338E+07 -4 46836E+02 3.52693E+00 2.91657E+06 8.02752E+07

|-1.19338E+07 1.49007E+10 -1 77292E+04 1.28000E+02 1.95829E+06 -2.09062E+09

|-5.28000E+02 -1.78735E+04 _ 53347E+t0 -7.79t57E+07 t.13600E+03 2.55830E+04

| 3.32553E+00 1.39636E÷02 -7 79157E+07 2.83328E+06 "2.68955E-01 -7.55852E+01

| 2.91657E+06 t.95830E+06 I 15433E+03 -1.35688E-01 2.83928E+06 t.65006E+05

S.02753E+07 -2.09062E+09 2 54100E+04 -6.92912E+01 1.65018E+05 4.29360E+09

(3.56)

where the units are in pounds, inches, and radians. The

diagonal elements of (3.56) are in excellent agreement with

those of (3.45). The axial and bending stiffnesses differ

by less than five percent while the torsional and shear

stiffnesses differ by less than ten percent. The

off-diagonal coupling elements also agree if we consider the

coupling ratios,

qij "

Cij

_CiiCjj'

i#j (3.57)

If qij is less than about 0.1, coupling between degrees

freedom i and J is unimportant. In both cases, qij<<0.1

of
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except for C43, C51, C61, and C62. These important

coupling terms are in excellent agreement between the two

methods. Thus, the energy of bars method for one bay and

the finite element pin-jointed truss analysis for one bay

each produce about the same stiffnesses when the results

from the truss analysis are transformed into the form of

those from the energy method. However, the original

stiffnesses from the finite element truss analysis of one

bay produce frequencies which better match the finite

element results of Chapter 2 than do those from the energy

of bars method.

3.2 BENDING FREQUENCIES FROM BERNOULLI-EULER BEAM THEORY

Consider the equation of

bending,

motion of a Bernoulli-Euler beam in

__ _2w (3.58)El 84w + m-- = 0

_X 4 at 2

where w is the transverse deflection of

assume harmonic motion with frequency

_=w/L, where L is the length of the beam,

write

the

-(iv) 2 mL 4
w - _ (_y-)_ = 0

beam. If we

, and if we define

and % =X/L, we can

(3.59)

where the derivatives are now with respect to _ .

solution to this equation is

- Clcosl _ + C2slnl _ + C3cosh_ + C4sinhi_ (3.6o)

4
2 mL (3 61)

_4 _- _ ([y_)

The
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The geometric boundary conditions at X-O are

w- 0

V - 0 (3.62)

With a concentrated

inertia Ic at the

conditions at X-L are

mass M c and a concentratd moment of

tip of the beam, the natural boundary

where

-- IIIw + B;- 0

--ll --I 0
W - fXW "

(3.63)

2M L 3 k4McC =

= _ E1 mL

21 L 141cC
(% = U_

EI mL 3 (3.64)

If we place (3.60) in (3.62)

characteristic equation in X:

and (3.63), we obtain the

k3[sinl - sinhk + 7(cos% + coshk)}

+ _{cosi - coshl - y(sini - sinh%) } = 0

_(cos% + coshl) - e(sinl + sinh%)
Y = %(sin% + sinhl) + a(cosA - cosh%)

(3.65)

We can solve this equation for _ and then use (3.61) to find

the natural bending frequencies of the beam, _.

For the SADE truss, the concentrated mass M c is equal

to the tip mass plus the joint mass at nodes 29, 30, 31, and

32, which adds up to 0.61479 lb-sec2/in. To obtain the

SADE Final Report Page 100



concentrated moment of inertia Ic, we average the joint

mass at the four nodes at the free end of the truss and

calculate the moment of inertia of these point masses about

the neutral axis for bending, which passes through either

nodes 29 and 32 or nodes 30 and 31. This moment of inertia

is equal to 464.94 ib-sec2-in. Note that Bernoulli-Euler

beam theory does not distinguish between bending about the

two neutral axes, which correspond to the pairs of closely

spaced bending modes in the

Chapter 2. This is a

=1.3520x10 l0 ib-in 2 and

stiffness is not accounted for.

finite

result

the

element analysis of

of EI 1 = EI 2

fact that the shear

The only quantity left to be found is the mass per unit

length m. To calculate m we first average the Joint mass

over all joints (excluding the joint mass at nodes 29, 30,

31, and 32 at the tip of the truss). We then find the mass

of a typical segment of the truss, such as the segment from

X=27.5 inches to X=82.5 inches. In this segment there are

eight 55 inch bars, five diagonal bars, and four average

joints. We sum the mass of the bars and the joints and

divide by 55 in. to obtain m=2.733x10 -3 ib-sec2/in 2 .

Since the length L of the SADE truss is 385 in., we then

have Mc/(mL)=0.58429 and Ic/(mL3)=2.9811x10 -3.

The frequencies for the first four modes of the

Bernoulli-Euler model are presented in Table 4. These

results correspond to the first four bending mode pairs of

the SADE truss.

3.3 BENDING FREQUENCIES FROM TIMOSHENKO BEAM THEORY

The equations of motion

applied forces are

for a Timoshenko beam with no
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CA( __2w + _ m_

_X 2 _X ) "

E1 _2_ _ GA( _w

_X 2 -_ +_) ,, iR'_

(3.66)

where i r is the rotary mass moment of inertia per

length, w is the deflection of the midline, and _ is

angle of rotation of the cross section (see Figure 5).

we assume harmonic motion with frequency co

nondimensionalize

(3.66) as

unit

the

If

and

by setting W=w/L and _-X/L, we can rewrite

-_'+ S_ z'' - (1-b2SR) Lp -, 0

(3.67)

where a prime indicates

and

differentiation with respect to &,

2 mL 4

b 2 = to (-ff_-)

EI
s - (3 68)

GAL 2

i
R

R -
mL 2

If I-b2SR > 0 and we define

!

/ j. b _(S+R) + ( S+R)2 + 4(I--- -SR)

ll) 2 _ b 2

(3.69)
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we can rewrite the solution to (3.67) as

= ClCOShll_ + C2slnhll_ + C3cos12_ + C4slnl2_

! / I /

- ClslnhXl_ + C2coshXl_ + C3sinX2_ + C4cosX2_

However, from (3.67) we have

(3.7o)

_I -II 2- -w - b Sw (3.7l)

This equation can be used with (3.70) to give

Ci = -FIC 1

C_ = -FIC 2

/
C 3 = F2C 3

(3.72)

C_ - -F2C 4

I

I 2 + b2S
i

I

1 2 _ b2S
2

F 2 =

12

There are four boundary conditions to consider.

geometric boundary conditions at X=0 are

The two

w : 0

: 0
(3.73)

The two natural boundary conditions at X=L are
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_x

-GA(_'_- + '1 " Mc

(3.74)

Using (3.68), we can rewrite the boundary conditions as

_ 0

_,_ b2[c _ ,, 0 (3.75)

--/ 2 -- --
w _ b SM w + _ = 0

c

I
C

[ = --
C mL 3

M
C

c mL

If (3.70) are substituted into (3.75)

conditions can be expressed in matrix form as

the boundary

All AI 2 AI3 AI4

A21 A22 A23 A_,4

A31 A32 A33 A34

A41 A42 A43 A44

!i

C4

l

= 0 (3.76)

where

All - 1

A21 = 0

SADE Final Report

A = 0
12

A22 =-F

AI3 = i

A23 = 0

AI4 = 0

A24 "-F 2
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A31 = F1(b2[ slnhA 1 - A coshE )c 1 1

A32 = FI (b2Iec°shl! - %1 sinh%l)

= - b21 sine 2)A33 F2(12c°sl2 ¢

A34 = F2(12sin 2 + h2[cc°sl2)

A41 = (li-Fl)slnh_. I - b2SMcCOShAl

A42 = (_l-FI)COsh_ I - b2SMcslnh,\l

A43 = (-%2+F2)sin%2 - b2Sfi ccos% 2

A44 " (k2-F2)cosA 2 - b2SMcStnA2

For the boundary conditions to be satisfied

det(A) - 0 (3.7V)

This is the characteristic equation, which must be solved

for b 2. Once we have a value of b 2 we can use (3.68) to

find the corresponding natural frequency, w.

In section 3.1, article A, it was shown that the bending

of the SADE truss occurs in two principal directions, with

corresponding bending stiffnesses EI 1 and EI 2 and shear

stiffnesses GA 1 and GA 2 . In addition, I c changes

slightly depending on the bending direction. The joint

masses of nodes 29, 30, 31, and 32 from Table 2 can be used

with Figure 3 to calculate Ici=472.37 Ib-sec2-in and

Ic2=457.50 ib-sec2-in. The length L of the truss is 385

inches. The only quantity left to be found is the rotary

inertia per unit length ir. For Jr, consider one

segment of the truss, such as the segment from X=27.5 inches

to X=82.5 inches. The planes about which bending occurs

pass through diagonally opposite nodes, slicing the truss
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cross section into two triangles. The rotary inertia of the

segment is the sum of the products of the infinitessimal

masses in the segment and their perpendicular distances to

the bending plane. The rotary inertias of the bars can be

found using integration and inertia transfer theorems;

calculating the rotary inertia of the joint masses is

straightforward. Once the total inertia is determined it is

divided

ir2=1.6807 ib-sec 2.

by 55 inches, yielding iri-1.7592 ib-sec 2 and

The results are

principal direction

frequencies in each

element analysis.

corresponds to the

bending pair.

presented in Table 4. Bending in

1 corresponds to the lower of the two

bending mode pair from the finite

Bending in principal direction 2

higher of the two frequencies in each

FIGURE 5

Timoshenko Beam

/

plane

w

:'_X u
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3.4 TORSIONAL FREQUENCIES

The equation of motion for a rod in torsion is

_20 (3 78)ca _2--_e- ± --- 0
8X 2 Pst 2

where 8 is the angular deflection along the rod. If we

assume harmonic motion with frequency _ , and if we define

_=x/L, we can write

9# w2 i L 2
+ Gj--P_ 0 = 0

(3.79)

where the derivatives are now with respect

solution to this equation is

to _ . The

O = ClCOSl _ + C2sini$

_i L 2

1 2 = ___2__
CJ

(3.80)

(3.81)

The geometric boundary condition at X=0 is

0 = 0 (3.82)

With a concentrated polar moment of inertia Ip at the tip,

the natural boundary condition at X=L is

0'- a0 = 0

I c L 12 I-c__£_.2
GJ i L

P

(3.83)
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Placing (3.80) in (3.82) and

characteristic equation in A :

(3.83), we obtain the

;kcos_ - esln_ " 0 (3.84)

We can solve this equation for I and use (3.81) to find the

torsional frequencies of the rod, _.

For the SADE truss, the concentrated polar moment of

inertia Ip is calculated about an axis in the X direction

passing through the point Y=Z=27.5 inches using the tip mass

and Joint masses at nodes 29 through 32. It equals

929.87 ib-sec2-in. For ip consider a typical segment of

the truss, such as the segment from X=27.5 inches to X=82.5

inches. We calculate the polar moment of inertia of the

bars in this segment about an axis in the X direction

passing through Y=Z=27.5 inches. We add to this the polar

moment of inertia of four average Joint masses (as derived

in section 3.2) to obtain the total polar moment of inertia

of this segment of the truss. Dividing this quantity by 55

inches yields the polar moment of inertia per unit length

ip=3.4399 ib-sec 2. GJ was found to be

3.6923xi09 Ib-in 2 in section 3.1, article A. With L=385

inches, (IpL)/(GJ)=0.70213. We can now solve for the

torsional frequencies of the SADE truss. The results are

presented in Table 4.

3.5 AXIAL FREQUENCIES

The equation of motion of an axial bar is

A_2U _2uE -- - m_ = 0
_X 2 _t 2

(3.88)

This equation is of the same form as (3.78) for a torsional

rod. If we define u=u/L, the analysis for the natural
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frequencies of the axial bar is exactly the same as for the

torsional rod. We only need to substitute EA for GJ, m for

ip, u for %, and M c for Ip.

For the SADE truss, EA was found to be 1.8310x107 ib

in section 3.1, article A. M c and m were calculated in

section 3.2, so we know the parameters needed

the axial frequencies of the SADE truss.

The result is presented in Table 4.

axial frequency is calculated since the second

the eighteenth overall mode of the SADE

pin-jointed finite element

element results were obtained.

to solve for

Only the first

axial mode is

truss with a

analysis, for which no finite
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4. SUPER-FINITE ELEMENT METHOD

The displacement vector _ in (3.49) can be used to

define the degrees of freedom of a super-finite element for

the SADE truss. This super beam element consists of one bay

of the truss. There are twelve degrees of freedom for this

element: three translations and three rotations at each

end. Thus, (3.49) defines the degrees of freedom at one end

of an element.

Since there are seven bays in the SADE truss, it takes

seven super-finite elements to model the truss. Therefore,

there are now eight nodes in the finite element model.

Since there are six degrees of freedom at each node, the

model of the unrestrained structure has forty-eight degrees

of freedom. Thus, the super-finite element model is much

smaller than the ninety-six degree of freedom pin-jointed

and one-hundred-and-ninety-two degree of freedom

rigid-jointed finite element models of Chapter 2.

The 12x12 element stiffness matrix _xyz for one bay

can be found by using some of the results from Chapter 3.

From (3.55), we can solve for_ in terms of the C matrix,

which was obtained by considering the bar energy of one bay:

(4.1)

Let _R be the matrix defined in (4.1) after the rows and

columns of K are rearranged to Correspond to the degrees of

freedom in u (as given by (3.49)). _R is the 6x6

stiffness matrix for one bay when that bay is restrained at

X=0, as discussed in Chapter 3, This matrix is the same for

all bays of the SADE truss since C is the same for all bays.

Now let B2 be the 6xl displacement vector at the free end

(X=L) of the bay as defined in (3.49), with _2 the

corresponding 6xl force vector as defined in (3.48). Also,

let _I and _1 be the displacement vector and force

vector at X=0. (Ul=O for now, since we have restrained
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this end of the bay). Then

II[ RI[Ifl _R [ %11

-f2 gSTll u-2

(4.2)

/
where _R and _S are yet to be determined.

To determine _S set %11=O. Also, let all elements of

%12 be zero except the ith element, which is set equal to

one. We can find the force vector _2 which corresponds to

this unit displacement state from f2=KRU2 (since

%11=O). The corresponding _l can then be found by

imposing the six static equilibrium conditions on the bay.
/

This _i is then the ith column of _S" _R is found in

the same way, that is, %12 is set equal to O and we find

_2 from f2=KsTul with only the ith column of %11

nonzero and equal to one. Then _l is found from the

conditions of static equilibrium" to give the ith column of

/
KR "

Performing the above analysis yields

4.29302E+05 O.O0000E+O0

tO.OOOOOE+O0 5.60676E+04

_R: I 5'60676E+04 O.O0000E+O0
|1.54186E+06 O.O0000E+O0

11.54186E+OG -1.54t86E+O6

O.OOOOOE+OO 1.54186E+06

"1
5.60676E+04 1.54186E+06 1.54186E÷06 O.OOO00E+O0 1
O.OOOOOE+OO 0.0OOOO£+00 -1 54186E+O6 -1 54186E+O6(

5.60676E+04 O.O0000E+O0 1.54_86E+06 O.O0000E+O0 t

O.O0000E+O0 8.48021E+07 O.O0000E+O0 -4.24011E+O7J

1.54186E+06 O.OOOOOE+OO 3.24659E+O8 4.24011E+O7 1

O.OOOOOE+OO -4.24011E+O7 4.24OffE+07 3.24659E+O8J

_.MR=

(4.3)

29302E+05 O.O0000E+O0 5,60676E+04 1.54186E+06 -1.54186E+06 O.O0000E+O01

O0000E+O0 5.60676E+04 O.O0000E+O0 O.O0000E+O0 -1.54186E+06 1.54186E+06 I
60676E+04 O.O0000E+O0 5.60676E+04 O.O0000E+O0 -1.54186E+06 O.O0000E+O0 I

54t86E+06 O.O0000E÷O0 O.O0000E+O0 8.4802tE+07 O.O0000E+O0 -4.2401tE+07]
54186E+06 -f.54186E+06 -t.54186E+06 O.O0000E+O0 3.24659E+08 -4.2401tE+07_

O0000E+O0 1.54186E+06 O.O0000E+O0 -4.240fIE+07 -4.240ffE+07 3.2465gE+O8J

(4.4)
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KS=
i_

7-4.29302E+05 O.O0000E+O0 -5.60676E+04 -1.54186E+06 -1.54_86E+06 O.O0000E+O0

O.O0000E+O0 -5.60676E+04 O.O0000E+O0 O.O0000E+O0 1.54186E+06 1.54186E+O6J
-5.60676E+04 O.O0000E+O0 -5.60676E+04 O.O0000E+O0 -1.54186E÷06 O.O0000E+O0_

O.O0000E+O0 O.O0000E+O0 -8.48021E+07 O.O0000E+O0 4.240tiE+07 iI-,.541,6C*06
1.54186E+06 1.54186E+06 1.54186E+06 O.O0000E+O0 -2.39857E+08 -4,24011E+07 J

i

t O.OOOOOE+O0 -f.54f86E+06 O.O0000E+O0 4.240f rE+07 4.2401fE+07 -2.39857E+OSJ

(4.5)

where the units are in pounds, inches, and radians.

Therefore, we now have the element stiffness matrix in local

coordinates _Kxyz. In this case, the local coordinates are

in the same directions as the global coordinates, so we can

assemble seven element stiffness matrices _xyz to

determine the 48x48 unrestrained structure stiffness matrix.

To assemble a structure mass matrix we lump the mass and

inertia of the bays at their endpoints. The bay endpoints

are now the nodes of the finite element model. Thus, node 1

is at X=0, node 2 is at X=55 inches, etc., and node 8 is at

X=385 inches (see Figure 1). All eight nodes are at

Y=Z=27.5 inches. The first three diagonal elements of the

48x48 unrestrained structure mass matrix are the lumped mass

at node 1. The next diagonal element (element (4,4)) is the

lumped polar inertia at node 1, about an axis in the X

direction through the nodes. Element (5,5) is the lumped

rotary inertia at node i, about a plane at Z=27.5 inches

parallel to the X-Y plane (for bending about Y), and element

(6,6) is the lumped rotary inertia at node i, about a plane

at Y=27.5 inches parallel to the X-Z plane (for bending

about Z). This sequence of six lumped parameters is

repeated for the remaining seven nodes to make up the

forty-eight diagonal elements of the lumped unrestrained

structure mass matrix.

The lumped mass at a node is made up of the four joint

masses at the X location of that node as well as the bar

masses on each side of it. Let XN be the X coordinate of

node N. Then we lump the bar mass from X=XN-L/2 to

X=XN+L/2 at node N, where L is the length of the bay. For

node 1 this quantity equals 0.10630 ib-sec2/in. For nodes
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2 through 7 it is 0.15522 Ib-sec2/in and for node 8 it is

0.67686 Ib-sec2/in (including the tip mass). The lumped

polar inertia at node N is the sum of the polar moments of

of all bar and Joint masses from XN-L/2 toinertia

XN+L/2. At node 1 this quantity

131.28 lb-sec2-in, at nodes 2 through

196.63 ib-sec2-in, and at node 8

994.23 ib-sec2-in. The lumped rotary inertia,

equals

7 it is

it is

which is

the same for bending about Y or Z, is the sum of the rotary

moments of inertia of all bar and joint masses from XN-L/2

to XN+L/2. For node 1 it equals 65.642 ib-sec2-in, for

nodes 2 through 7 it is 98.314 ib-sec2-in, and for node 8

it is 497.12 lb-sec2-in.

The structure must now be totally restrained at its base

(X=0). Therefore, rows and columns 1 through 6 are removed

from the unrestrained structure stiffness and mass matrices

to form the restrained structure stiffness and mass

matrices, and rows 1 through 6 are removed from the 48xl

unrestrained displacement vector. The restrained system

(2.19) has now been defined. The natural frequencies and

mode shapes are solved for using the methods of Chapter 2.

The results are presented in Table 4.
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5. COMPARISON OF METHODS FOR FREQUENCY DETERMINATION

The results from chapters 2, 3, and 4 are presented in

Table 4. The pin-Jointed and rigid-jointed finite element

results are in very good agreement through the third bending

mode pair (modes 8 and 9). After mode 9, the rigid-jointed

model encounters closely spaced modes caused by the

vibrations of individual bar members of the truss (this

phenomenon will be addressed in the two subsequent

chapters). Therefore, up to mode 9, both standard finite

element models can be used as a basis to Judge the continuum

and super-finite element results. Past mode 9, the

continuum and super-finite element results should be judged

against the pin-jointed finite element frequencies only,

since the pin-jointed, continuum, and super-finite element

models do not account for the closely spaced bar modes,

while the rigid-jointed model does account for the closely

spaced bar modes.

The first frequency from the Bernoulli-Euler continuum

model provides a good estimate of the average of the finite

element frequencies for the first bending mode pair.

However, the subsequent frequency values diverge rapidly

from the finite element results.

In contrast, the Timoshenko continuum model does an

excellent job of finding the bending frequencies of the SADE

truss. As discussed in section 3.3, the Timoshenko model

distinguishes between the two modes in each bending mode

pair. In the first two bending mode pairs, which correspond

to overall structural modes I, 2, 4, and 5, the Timoshenko

continuum frequencies differ from both the pin-jointed and

rigid-Jointed finite element results by less than four

percent. In modes 8 and 9, the Timoshenko continuum results

differ by four percent from the pin-jointed frequencies and

by less than nine percent from the rigid-jointed

frequencies. In the modes 11 and 12, the difference from

the pin-jointed frequencies is still less than seven
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percent.

The torsional continuum model provides good agreement

with the finite element results in the first two torsional

modes. The first torsional mode of the SADE truss is the

third overall structural mode. In this mode the torsional

continuum result differs from the finite element results by

less than five percent. In the second torsional mode, which

is the seventh overall mode, the torsional continuum

frequency differs by less than seven percent from the finite

element results. The results start to diverge in the third

torsional mode, which is the tenth overall mode. Here the

torsional continuum frequency differs from the pin-jointed

result by fifteen percent.

The frequency obtained from the axial continuum model

for the first axial mode of the SADE truss is in excellent

agreement with the finite element results,_ differing by only

three percent. Only the first axial frequency is calculated

since the second axial mode is the eighteenth overall mode

of the SADE truss with a pin-jointed finite element

analysis, for which no finite element results were obtained.

The super-finite element model has two inherent

advantages over the continuum models: it yields frequencies

for all three mode types (bending, torsional, and axial,

including all couplings) at once, and it provides

eigenvectors to specify the mode shapes. In bending, the

super-finite element model does as well as the Timoshenko

continuum model in the lower modes, although it does

slightly worse in higher modes, where the seven element

discretization comes into play. For the first bending mode

pair the super-finite element results differ from the finite

element frequencies by less than two percent. In the second

pair the difference is about five percent or less. For the

third bending mode pair the frequencies from the

super-finite element model differ from the pin-jointed

results by less than seven percent and from the

rigid-jointed results by less than thirteen percent. In the
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fourth bending mode pair, corresponding to the eleventh and

twelfth overall modes of the SADE truss, the difference

is less than thirteen percent from the pin-jointed results.

The super-finite element model is not quite as good at

matching the torsional finite element frequencies as is the

torsional continuum model. It differs from the finite

element results by twelve percent in the first torsional

mode, by over eight percent in the second torsional mode,

and by twelve percent from the pin-Jointed frequency in the

third torsional mode. The super-finite element result for

the first axial mode is not in as good agreement as the

axial continuum result, although it only differs from the

finite element results by about six percent.
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o VIBRATIONS OF A TWO-DIMENSIONAL MODEL

OF THE SADE TRUSS

6.1 STANDARD FINITE ELEMENT METHODS

To determine the effects of individual bar natural

frequencies on the global modes of a space truss, a simpler,

two-dimensional version of the SADE truss is considered.

This truss has the same configuration as the general

two-dimensional truss of Figure 6. The bar elements have

the same dimensions and properties as the bars of the

three-dimensional truss of Chapter 2. The Joint masses of

the SADE truss from Table 2 are averaged, and this average

Joint mass is placed at each node of the two-dimensional

truss. Also, one-half of the SADE tip mass is divided

equally between nodes 15 and 16. In addition, the mass of

the bars in the three-dimensional truss which would enter

the nodes of the two-dimensional truss from the Z dimension

is accounted for. This extra mass is from those half bars

which do not lie in the X-Y plane which remain after the

three-dimensional truss is sliced down the middle at Z=27.5

inches. The mass of each half bar is lumped at that node of

the two-dimensional model where the bar would enter from the

Z dimension.

The two-dimensional truss is analyzed with three types

of finite element models. First, a standard pin-jointed

finite element model is employed (see section 2.2), using a

consistent mass matrix to model the mass of the bars in the

truss. This model has two translational degrees of freedom

at each node. Nodes 1 and 2 are pinned to restrain the

structure, so there are 28 degrees of freedom in the

restrained model. Next, a standard rigid-Jointed finite

element model is used (see section 2.3). There are now

three degrees of freedom, two translations and one rotation,

per unrestrained node, plus the rotations at nodes 1 and 2,

yielding 44 degrees of freedom in the restrained model. The
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results for these two standard finite element models are

presented in Table 5 and discussed in the section below.

6.2 REFINED FINITE ELEMENT MODEL WITH ADDITIONAL

NODES AT BAR MIDPOINTS

The truss is analyzed next with a refined rigid-jointed

finite element model, with extra nodes at all bar

midpoints. There are now forty-five nodes with three

degrees of freedom per node. The two translational degrees

of freedom at nodes 1 and 2 of Figure 6 are restrained, so

the restrained model now contains 131 degrees of freedom.

The frequency results for the standard finite element

models and the refined finite element model with additional

nodes at bar midpoints are presented in Table 5, and the

eigenvectors are in Appendix C. The standard pin-jointed

frequencies provide good estimates of the pin-jointed

bending and axial frequencies of the three dimensional SADE

truss (compare Tables 4 and 5). The frequencies from the

standard rigid-jointed model of the two-dimensional truss

match the pin-jointed frequencies for the two-dimensional

truss through the fourth mode. However, the fifth through

eleventh modes of the rigid-jointed model of the

two-dimensional truss are closely spaced. These closely

spaced modes are characterized by the domination of

vibrations, relative to the joints, of the seven individual

diagonal bars in the truss. This phenomenon is explained

more fully in Chapter 7.

The eigenvectors of the refined rigid-jointed model with

additional nodes at bar midpoints validate the fact that the

closely spaced modes are a result of individual bar

vibrations. The frequencies obtained with this model match

the results from the two standard finite element models up

to the fourth mode. However, the refinad rigid-jointed model

more accurately locates the closely spaced modes than does

the standard rigid-jointed model, placing them in a lower
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frequency band. Now modes 5 through 11 are characterized by

vibrations of the seven diagonal bars. The eigenvectors for

these modes show that the largest deflections occur at the

midpoints of these bars. The diagonal bars also vibrate

relative to the Joints in modes 3 and 4, although not as

severely as in the band of closely spaced modes from mode 5

to mode ii. In mode 12, the displacements of the shorter

bar midpoints are about two orders of magnitude greater than

the displacements of the diagonal bar midpoints. The

displacements of the shorter bar midpoints are also larger

than the Joint displacements in mode 12, so it appears that

a band of modes which are characterized by vibrations of the

shorter bars begins with mode 12.

The finite element models of the two-dimensional truss

do not accurately predict the closely spaced bar modes in

the three-dimensional truss. For the three-dimensional SADE

truss, the bar modes begin with mode i0 at 68.9 Hz,

according to the standard rigid-Jointed model (see Table

4). In contrast, the standard rigid-Jointed model for the

two-dimensional truss shows the bar modes beginning at

82.0 Hz. (The correct value for the two-dimensional truss,

as given by the refined rigid-jolnted finite element model

with nodes at bar midpoints, is actually 59.5 Hz.) The

difference between the three-dimensional and two-dimensional

cases appears to be due to the presence of many more

diagonal bars in the three-dimensional truss than in the

two-dimensional truss. This would result in a greater

number of closely spaced modes characterized by vibrations

of the diagonal bars for the three-dimensional truss. Since

there are more modes, it makes sense that the frequency band

containing these modes is larger than the two-dimensional

band, and thus, the band for the three-dimensional truss

begins at a lower frequency than does the band for the

two-dimensional truss.
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VIBRATIONS OF A GENERAL TWO-DIMENSIONAL TRUSS

7.1 STANDARD FINITE ELEMENT METHODS

A simple two-dimensional truss with no lumped masses is

considered to illustrate the effects of individual bar

natural frequencies on the global modes of the truss. The

truss is shown in Figure 6. The only mass in the truss is

from the bars, which have the same dimensions and properties

as the bars of the three dimensional truss of Chapter 2 (see

Table 3).

The truss is first analyzed with a standard pin-jointed

finite element model (see section 2.2), using a consistent

mass matrix to model the bar mass. There are two

translational degrees of freedom at each node, which yields

28 restrained degrees of freedom after nodes 1 and 2 are

pinned. The results are presented in Table 6 and Appendix

C. The frequencies are substantially higher than those of

the two-dimensional SADE model of Chapter 6, due to the

absence of the joint masses and tip mass.

The truss is also analyzed using the continuum methods

of Chapter 3. Using the methods of section 3.1, part A, we

find that the equivalent stiffness properties of the truss

are EI=6.5960x109 ib-in 2, GA=l.0693x10 -1 Ib, and

EA=8.7220xI06 lb. The equivalent mass properties are

m=4.8627x10 -4 ib-sec2/in 2 and ir = 1.9438xi0 -I

lb-sec 2 . The resulting continuum frequencies are also

shown in Table 6. The Bernoulli-Euler continuum bending

frequencies are not reliable, except in the first mode.

However, the axial continuum frequencies and Timoshenko

continuum bending frequencies compare very well with the

pin-Jointed finite element results, even in the higher

modes.

The truss is next analyzed with a standard rigid-Jointed

finite element model (see section 2.3), with nodes only at

bar endpoints. There are now three degrees of freedom, two
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translations and one rotation, at each node. The

translational degrees of freedom at nodes 1 and 2 are

restrained to yield 44 degrees of freedom in the restrained

model. The results are presented in Table 6 and Appendix

C.

The results obtained with the standard rigid-jointed

model are in good agreement with the pin-jointed results in

the first two modes. However, the results start to diverge

in the third mode. The third natural frequency is near the

first natural bending frequency of the longer, diagonal bars

in the truss. The first natural bending frequency of the

diagonal bars is 79.8 Hz with clamped endpoints and 35.2 Hz

with pinned endpoints (using standard Bernoulli-Euler beam

theory). The first natural bending frequency of the

shorter, 55 inch bars is 160. Hz with clamped endpoints and

70.4 Hz with pinned endpoints. The seven closely spaced

modes from 82.0 Hz to 99.2 Hz obtained with the standard

rigid-jointed model appear to be characterized by

vibrations, relative to the Joints, of the diagonal bars.

The pin-jointed finite element model completely missed

this phenomenon. After mode 2, the results obtained with

this model (or the continuum models) are completely

unreliable. The element stiffness matrices in the

pin-jointed model contain only extensional stiffnesses.

Therefore, the pin-jointed model cannot account for bending

vibrations relative to the Joints of the bar elements of the

truss. The continuum models are inherently unable to

account for the bending vibrations of individual elements of

the truss. However, the rigid-jointed element stiffness

matrices do account for the bending stiffnesses of the

individual bars in the truss. The rigid-Jointed model

therefore is influenced by first bending mode vibrations of

the diagonal bars, near the first clamped-clamped natural

frequency of these bars (79.8 Hz). The standard

rigid-jointed model of the three-dimensional SADE truss also

found closely spaced modes from 68.9 Hz characterized by
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vibrations of the diagonal bars (see Table 4). However, the

results in the next two sections show that although the

standard rigid-jointed model finds the closely spaced bar

modes, it does not place these modes in the correct

frequency band.

7.2 REFINED FINITE ELEMENT METHOD WITH ADDITIONAL NODES

AT BAR MIDPOINTS

The general two dimensional truss of Figure 6 is now

analyzed with a refined rigid-Jointed finite element model,

with an extra node at all bar midpoints. Therefore, the

refined model contains forty-five nodes. Since there are

three degrees of freedom per node (two translations and one

rotation), the restrained model contains 131 degrees of

freedom, after nodes 1 and 2 in Figure 6 are pinned. The

first bending modes of the individual bars can now be

modeled more accurately since the refined model with nodes

at bar midpoints takes the deflection at the bar midpoints

into account. This model can also accurately account for

the second bending mode of the bars, since it also considers

the rotations at the bar midpoints.

The results from the refined rigid-Jointed model are

presented in Table 6 and Appendix C. The frequency for the

first mode at 12.3 Hz matches those from the pin-jointed and

standard rigid-jointed finite element analyses. This mode

is the usual first bending mode of the truss. Table 7 shows

that the maximum deflection at a diagonal bar midpoint, the

maximum deflection at a joint, and the maximum deflection at

a shorter, 55 inch bar midpoint, are about the same for the

first mode. The maximum deflections occur at the free end

of the truss, as would be expected in the first bending

mode. The first mode is plotted in Figure 6, using the

eigenvector from the refined rigid-jointed finite element

model with additional nodes at bar midpoints. The actual

physical truss is 385 inches long, and the eigenvectors are
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normalized to a maximum deflection of one inch in a

coordinate direction. In the figure, the truss is 4.2

inches long and the maximum deflection of any node in a

coordinate direction is shown as 0.2 inches. The

eigenvectors were scaled accordingly to make the plots.

The frequency for the second mode from the refined

rigid-jointed model, at 49.8 Hz, is slightly lower than the

corresponding second mode frequencies from the pin-jointed

and standard rigid-Jointed models, but this mode is still

the second bending mode, as the eigenvector plot of Figure 6

shows. However, notice that the diagonal bars have started

to vibrate relative to the Joints and that the maximum

deflections occur at the diagonal bar midpoints. Table 7

shows that the maximum of the diagonal bar midpoint

deflections is about twice as great as the maximum of the

joint deflections or the maximum of the shorter bar midpoint

deflections.

The third natural frequency from the refined

rigid-jointed model, at 61.3 Hz, is not at all close to the

corresponding frequencies from the pin-jointed and standard

rigid-jointed models. With the pin-jointed and standard

rigid-jointed models, the third mode is an axial mode, but

the refined rigid-jointed model shows that the third mode of

the structure is not an axial mode. The plot of the third

mode (at 61.3 Hz) in Figure 6 reveals that this mode is

characterized by severe vibrations of the diagonal bars,

while the deflections of the joints is imperceptible. While

some of the shorter bar midpoints show a deflection, these

deflections only occur in those bays of the truss where the

diagonal bars are most excited. Table 7 shows that the

maximum deflection of a diagonal bar midpoint is two orders

of magnitude greater than the maximum deflection at a joint

and significantly greater than the maximum deflection at a

shorter bar midpoint. The deflection of the shorter bar

midpoints appears to be a secondary phenomenon caused by the

need for the boundary conditions to be satisfied at the
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rigid Joints. While a joint is free to rotate, the relative

angles at a Joint between the bars which are connected at

that Joint must remain constant.

The next six modes from the refined rlgid-Jointed model

are similar to the third mode, at 61.3 Hz. Table 7 and the

eigenvectors in Appendix C reveal that all seven of the

modes in the closely spaced band from 61.3 Hz to 74.2 Hz are

characterized byvibrations of the diagonal bars, although

the Joint deflections become more significant as frequency

is increased. As discussed above, the pin-Jointed finite

element model and the continuum models completely miss this

band, while the standard rigid-Jointed finite element model

found the band, but placed it in the wrong location (see

Table 6). The analysis of the truss with a finite element

model employing exact dynamic stiffness coefficients

presented in the next section validates the results of the

refined rigid-Jointed finite element model. The first

natural bending frequency of the diagonal bars is 35.2 Hz

with pinned endpoints and 79.8 Hz with clamped endpoints, so

the band of diagonal bar modes lies somewhere between these

two values, but closer to that obtained with the clamped

(rigid) endpoints.

The next three modes, modes i0, Ii, and 12, from the

refined rigid-Jointed model are very similar to each other.

They are characterized by severe vibrations relative to the

Joints of the shorter, 55 inch bars. Mode i0, at 82.7 Hz,

is plotted in Figure 6. Note the symmetry and the second

bending mode shape of the diagonal bars, which deflect

slightly to satisfy the boundary conditions at the Joints.

However, Table 7 shows that the deflections of the shorter

bar midpoints are two orders of magnitude greater than the

deflections of the Joints and one order of magnitude greater

than the deflections of the diagonal bar midpoints. Thus,

it appears that a band of modes characterized by vibrations

of the shorter bars begins at 82.7 Hz. The first natural

bending frequency of the shorter bars is 70.4 Hz with pinned
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endpoints and 160. Hz with clamped endpoints. Therefore,

the band of shorter bar modes begins after the first natural

pinned bending frequency of the shorter bars. Since there

are twenty-two shorter bars in the truss, there are most

likely twenty-two modes in the band of shorter bar modes, so

this band may extend to near the first natural clamped

bending frequency of the shorter bars.

7.3 FINITE ELEMENT MODEL WITH EXACT DYNAMIC STIFFNESS

COEFFICIENTS

To validate the natural frequencies obtained for the

general two-dimensional truss with the refined rigid-jointed

finite element model with additional nodes at bar midpoints,

a finite element analysis with exact dynamic stiffness

coefficients is performed. The dynamic stiffness

coefficients modify the terms in the rigid-jointed bar

element stiffness matrix of section 2.3 (see (2.22)), making

these terms frequency dependent. Note that for the general

two-dimensional truss of Figure 6 in the X-Y plane, the rows

and columns of the element stiffness matrix (2.22)

corresponding to the translational degree of freedom in Z

and the rotational degrees of freedom about X and Y are not

needed, but the more general case is presented here.

The dynamic stiffness coefficients used, which neglect

transverse shear and rotary inertia, are those of Anderson

(reference 7), as obtained from Howson (reference 8). For

nonzero terms K i,j of the element stiffness matrix (2.22),

a dynamic stiffness coefficient Fi, j is multiplied by

Ki,j, and the resulting frequency dependent product

replaces Ki, j in the element stiffness matrix. We assume

that there is no prestressing and use the notation of

Chapter 2, where L is the length of the bar element, and

define
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FIGURE 6

General Two-Dimenslonal Truss

and Mode Shapes with Additional Nodes at Bar Midpoints
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where k can be 2 or 3, with k=2 corresponding to EIy and

k=3 corresponding to EI z. Also let

A k = l-coshdkCOSd k (7.3)

Then for the nonzero elements

(2.22),

in the upper triangle (j>i) of

FI, 1 = Scotg

FI, 7 = gcscg

d32(coshd3sind 3 +

F2,2 = 12A
3

3

d 3 sinhd3sind 3

F2, 6 = 6A 3

sinhd3cosd 3)

d 3 (sind 3 + sinhd 3)

F2,8 = 12A 3

d32(coshd3 - cosd 3)

F2, 12 6A 3

F3,3 = 12A 2

d23(coshd2sind 2 + sinhd2cosd 2)

F3,5 6A 2

d22sinhd2sind 2
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F4 4 = hcoth

F4,10

F5,5

= hcsch

d2(coshd2slnd 2 - sinhd2cosd2)

4A 2

F5 9 = F3 Ii
9

d2(sinhd 2 - sind 2)

F5 11 = 2A
2

d

F6 , 6 = 4A3

3(coshd3sind 3 - sinhd3cosd 3)

F6 8 = F2 12
• J

d3(slnhd 3 -

F6,12 = 2A 3

sind 3)

(7.4)

and

Fi+6,j+ 6 = Fi, j

The frequency dependent restrained structure stiffness

matrix for the general two-dimensional truss of sections 7.1

and 7.2 is assembled in the same manner as is the standard

rigid-jointed restrained stiffness matrix of section 7.1.

Therefore, the node numbering scheme is that of Figure 6,

and the frequency dependent restrained structure stiffness

matrix _(_) is of order 44. No mass matrix is needed, since
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the mass of the bars is accounted for in the frequency

dependent dynamic stiffness coefficients. We need only to

solve

det (K(_)) = 0 (7.5)

to obtain the natural frequencies of the truss. If lumped

inertias were present at the nodes, they would be placed in

a diagonal mass matrix J and the equation to be solved for

the natural frequencies would be

dec (K(_) - 2j) = 0 (7.6)

For the general two dimensional truss, which contains no

lumped inertias, the results are presented in Table 6. The

maximum difference in the first twelve modes between

frequencies from the finite element model with exact dynamic

stiffness coefficients and the refined rigid-jointed finite

element model with additional nodes at bar midpoints is 1.1

percent in mode 6. The maximum difference in the first

eighteen modes is 2.5 percent in mode 17. Therefore, the

results from the finite element model with exact dynamic

stiffness coefficients validate the frequencies obtained

with the refined rigid-jointed model.
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TABLE 7

Node Deflections of General Two-Dimensional Truss

Mode

No.

1

2

3

4

5

6

7

8

9

i0

ii

12

Modal

Frequency (Hz)

12.3

49.8

61.3

61.4

62.4

63.3

64.1

64.6

74.7

82.7

84.4

91.2

Magnitude of Node Deflection

Largest

Deflection

at a Joint

1.005

0.657

0.092

0.062

0.053

0.072

0.127

0.227

0.422

0.062

0.059

0.099

Largest

Deflection at

a Diagonal

Bar Midpoint

0.938

1.148

1.330

1.412

1.396

1.406

1.313

1.297

1.170

0.127

0.236

0.362

Largest

Deflection at

a 55 inch

Bar Midpoint

1.000

0.657

0.432

0.466

0.412

0.354

0.394

0.496

0.537

1.001

1.000

1.002
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8. CONCLUSIONS

The dynamic modes of the SADE truss have been obtained

using finite element and continuum models, and the results

are presented in Table 4 and Appendix C. The dynamics of a

two-dimensional model of the SADE truss and a general

two-dimensional truss have also been analyzed, and these

results are presented in Tables 5 and 6 and Appendix C.

The results of the truss analyses accomplished in this

study yield two major conclusions. Firstly, continuum

models of beam-like trusses can produce global natural

frequencies which are very close to standard pin-Jointed

finite element results. However, the results from refined

finite element models reveal that the modes obtained with

standard finite element and continuum models are inaccurate

except in the lowest modes, since the standard finite

element and continuum models do not adequately account for

the effects of individual bar vibrations on the global modes

of the truss.

The Timoshenko continuum model, the torsional continuum

model, and the axial continuum model yield results which are

close to the bending, torsional, and axial frequencies,

respectively, obtained with a standard finite element model

with pin-Jointed bar elements (three degrees of freedom per

node). The Bernoulli-Euler continuum model produces an

accurate bending frequency only for the first bending mode.

The standard finite element model with rigid-jointed bar

elements (six degrees of freedom per node) with nodes only

at bar endpoints yields results which are very close to the

pin-Jointed finite element results in the lower modes.

However, above a frequency corresponding to the lowest

natural bending frequency of the individual bars in the

truss, assuming pinned endpoints, the standard rigid-jointed

finite element model yields a group of closely spaced bar

modes characterized by vibrations, relative to the joints,

of the individual bars in the truss. These bar modes occur
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between the first natural bending frequency of a bar with

pinned endpoints and the first natural bending frequency of

a bar with clamped endpoints. For the trusses considered in

this study, there are two types of bars in the truss (with

the same cross-sectional properties but different lengths),

so the standard rigid-Jointed model finds two groups of

closely spaced bar modes characterized by first bending mode

vibrations of the individual bars.

The standard pin-jointed finite element and continuum

models completely miss these groups of bar modes.

Therefore, it appears that continuum models such as those of

Noor, Anderson, and Greene (reference 6) and Berry, Yang,

and Skelton (reference 9) may not be directly applicable to

determining the modes of lattice structures, except in the

lowest modes and perhaps those modes with frequencies which

are relatively far from any bar natural frequencies. These

continuum methods do not adequately model the individual

bars of the truss.

While a standard rigid-jointed finite element model with

nodes only at bar endpoints finds the closely spaced bar

modes, it does not place these modes at the right

frequencies. Therefore, analyses of lattice structures

which take advantage of theperiodicity of such structures

and which employ standard rigid-jointed bar elements with

nodes only at bar endpoints, such as that of Leung

(reference 10), may yield inaccurate results. A refined

rigid-jointed finite element model with additional nodes at

all bar midpoints places the closely spaced bar modes in a

significantly lower frequency band than does the standard

rigid-jointed model, although the band still lies between

the first pinned natural bending frequency and the first

clamped natural bending frequency of that type of bar. The

frequencies from the refined rigid-jointed model are

validated by a finite element analysis employing exact

dynamic stiffness coefficients. Related analyses of these

types of trusses with individual bar vibration effects have
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been done by Schroeder (reference 11). However, even the

refined rigid-Jointed finite element model may yield

inaccurate results if the slenderness ratios of the bars are

high enough, due to buckling and eccentricity effects,

unless the stiffness of the bars is modified as is shown by

Regelbrugge and Park (reference 12). But in general, it

appears that a refined rigid-Jointed model with additional

nodes at all bar midpoints is the simplest finite element

model which accurately determines the modes of a lattice

structure.
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APPENDIX A

SADE Sensor Placement

This appendix outlines a scheme for instrumenting the

Structural Assembly Demonstration Experiment (SADE) truss to

obtain structural dynamics data on a Space Shuttle flight.

The type, number, and placement of sensors is considered.

Since the truss would extend from the Shuttle bay, impulse

force inputs could be applied to the base of the truss by

the Shuttle attitude control system for lower mode

excitation. Actuators could be used on the truss to excite

higher modes.

To obtain the global modes of the truss, sensors should

be placed only at the Joints of the truss. Placing sensors

on the bars would not give results which would be useful for

obtaining global modes except for the lowest few modes,

since in many modes the bars vibrate relative to the joints,

as explained in Chapters 6 and 7. Therefore, sensors for

obtaining global modes would be placed only at

cross-sectional stations along the truss (along the X

dimension in Figure 1) where joints occur. The first

bending mode deflections of the bars could be obtained by

placing two accelerometers at the center of each bar, normal

to the bar and to each other. However, the bar deflections

could probably be measured adequately and less expensively

by placing strain guages at the centers of the bars. To

find the bar vibration modes, sensors would probably be

needed at only a few of the longer diagonal bars and a few

of the shorter, 55 inch bars (see Figure 1). However, these

modes might be impossible to separate since the

rigid-jointed finite element models indicate that they are

closely spaced.

Six accelerometers would be needed at a given

cross-sectional station to determine the global mode

characteristics at that station. Three mutually orthogonal
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accelerometers would be placed at each of two diagonally

opposite Joints at the station. For example, for the

station at the free end of the truss, at X=385, inches (see

Figure i), three accelerometers would be placed at each of

nodes 29 and 32 or nodes 30 and 31. The accelerometers at a

given joint would be aligned with the X, Y, and Z

directions. The two X accelerometers at diagonally opposite

joints of a station would sense axial motion and be able to

distinguish an axial mode from a bending mode. For an axial

mode, the readings from the two X accelerometers would be in

phase but for a bending mode they would be out of phase,

except when the neutral axis for bending passed through the

two joints with the accelerometers. To accomodate this

case, accelerometers at successive stations could be placed

at joints which define orthogonal axes. For example, if the

accelerometers at X=330 inches were placed at diagonally

opposite nodes 26 and 26, the accelerometers at X=385 inches

would be placed at diagonally opposite nodes 29 and 32. The

Y and Z accelerometers at a station would yield the

magnitude and direction of bending at that station and an

average torsional deflection for that cross-section which

would be used to obtain the torsional modes. However, more

accelerometers would be needed if the state of distortion of

the cross section were desired.

The number of stations to be instrumented would depend

on cost versus accuracy and the number of modes desired.

There are seven stations where accelerometers could be

placed (discounting the station at the base of the truss, at

X=0), so the maximum number of accelerometers which could be

used for obtaining the global modes would be forty-two.

Vander Velde and Carignan (reference 13) and Juang and

Rodriguez (reference 14) present methods for obtainig

optimum sensor locations for a given number of sensors,

based on the minimization of the state estimation error.

These methods could be used to determine the best X stations

for accelerometer placement if less than seven stations were
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instrumented. However, for this relatively short truss, it

might be more practical to place the sensors at stations

equal distances apart, as was done for the Astromast

(reference 15). In any case, it would certainly be

desirable to place sensors at the station at the free end of

the truss because large deflections could be expected there

in the lower modes, especially since the truss supports a

relatively large tip mass.

SADE Final Report Page 142



APPENDIX B

Coupled Timoshenko Equations for

a Cantilevered Beam-Like Structure

The strain

expressed as

energy U for a beam of length L can be

This equation

applicable to

(3.40), and i is defined by

U = ½/" !Tc___gdX (B. i)

is the continuum analog of (3.39), which

a discretized structure. C is given

e_.. - d :( d X

where u, v, and w are the

dv dw dO

(d--X - _) (_ ÷ ¢) d--_J

is

by

(B.2)

translations in the X, Y, and Z

directions, respectively, and 8, _, and _ are the rotations

about X, Y, and Z, respectively. Also let PX, PY, and

PZ be forces per unit length and mx, my,

moments per unit length with the obvious senses.

Py, and PZ be concentrated forces at X=L,

My, and M z be concentrated moments at X=L.

The first variation

must equal zero:

and m z be

Let PX,

and let MX,

of the total energy of the system

6n - 6U - 6w = 0 (s.3)

where H is the total energy. 6U, the first variation of the

strain energy, can be found by expanding (B.I), taking the

first variation of the resulting scalar integral expression,

and then integrating by parts. The resulting expression

contains an integral portion and boundary terms. The first

variation of the work W is

SADE Final Report Page 143



_W
- fL (Px_U+py _v+p z_W+mx_ 0+my _ (_+mzd _) dX

+Px_U (L) +Py_V(L) +Pz_w(L) +Mx_ 0 (L) +My_ qb(L) +Mzd _(L)

(B.4)

Substituting for _U and _W in (B.3) yields the six coupled

Timoshenko equations for the cantilevered beam and six

natural boundary conditions at X=L:

d 2 d2_+C d2_+C d dv d dw d2O

----_U+c12 _XX2 I -- 14d-X (d-X- _) +C 15 _ (d--X+_) +C 16 d-_ -PxlldX2 3dX2 =

__ d2O
d2u - d2_+C d2¢ _ d dv d dw +C 4 -PY

C14d-x2+C24dX2, 34dX 2+_44d-X(d--X-_)+C45d-X(d--X+¢) 6dX2 =

d2u+c d 2 ' _ d dv d d29

5j +C d---:o+C45"_'_('_-_-:_)+C55_X(_X+'P)+C56dX215dX2 2 33d: ( -
=-Pz

d2u+c d2_+C d25+C d dv d (d_X+¢) d20
CI6d---_X2 26d-_ 36d--X2 46a-_(d-_-_)+C56_--_ . +C66d-_X2 =-m E

C I d2u C du d2_____C d_+c d2qb+c34d dv de
3dE2- 15_x+C23dX 2 25a_ 33 dx---2 d-x (a-x- _) - c 35 d--X

d20 _ dv (_+d#)_C 5 ded d_+¢)+C36 ( -_)-C
+C35TX( d-_-c45 d-X 55 6d-X -my

d2u

12dX2

du d__+C d 2qb+C. d'#+C d dv d dw

--+C14d-_+C22dE2 23dX2 24dX 24 d--X(d-X-_) +C 25 d-X (d--X+qb)

d20 _ d___ dv dw dO
4dx+C44 _ (_--_+q_)+c46a- _ "-m Z+c 26_x2+C 3 ( -_) +c45

At X=L ,
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du d__+C d_+ C dv dw d@
CIid-x+CI2dX 13dX 14 15 d-X+ 16dX($-f-_)+c ( ¢)+c _ = Px

C15_X+C25 +C35 5 d--X- 5 dX *)+C56_X = PZ

du d___+ C - d_+c dv
CI6]'X+C26dX 36d-_ _46(-d'--x-_) +c d_ dO56 ( +_)+C66d'-- _ = M X

du d*,_ d,._,,. (dr ..
C13_-'_+C23_-'X_-u33_-_*u34 _-_-_0) +C __ d.935 ( +'_) +C36d-_. = My

du d'_ de dv .dw+ . d_
(_-_-tp) +C 2 (-d--X (_) +C26 = MZCl 2 d'X+C2 2 d-X+C2 3d'x+C2 4 5 _"
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Sub-appendices C and D of Appendix C have not been included in this report for the sake

of brevity. Sub-appendix C lists in tabular form the eigenvalues and eigenvectors of the

SADE structure. Sub-appendix D contains program listings for the analyses presented in

Appendix C. Readers interested in these details should contact the MIT Space Systems

Laboratory, and request SSL Report 12-85.
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